We show that operating magneto-optic coupled ring isolators near an exceptional point (EP) fundamentally improves their tradeoff between isolation bandwidth and insertion loss. In analogy to EP sensors, operating a coupled ring isolator at an EP causes its isolation bandwidth to depend on the square root of the nonreciprocal phase shift (NRPS) instead of the usual linear dependence, thereby enhancing the bandwidth when the NRPS is small. In cases of practical interest, this behavior enables more than a 50% increase in 20 dB isolation bandwidth at 3 dB insertion loss for a given pair of rings. The advantage of EP operation grows in the vicinity of magneto-optic material resonances and should extend to other types of on-chip isolators that rely on similarly weak nonreciprocal perturbations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.423426DOI Listing

Publication Analysis

Top Keywords

isolation bandwidth
12
exceptional point
8
coupled ring
8
bandwidth insertion
8
insertion loss
8
point magneto-optic
4
magneto-optic isolators
4
isolators operating
4
operating magneto-optic
4
magneto-optic coupled
4

Similar Publications

A multipurpose antenna system that can handle a broad area of frequencies is crucial in the effort to build up widespread 5G Internet-of-Things (IoT) networks. For fifth-generation Internet-of-things applications, this research introduces a new multi-band antenna that can operate in the sub-6 GHz band (2-7 GHz), Ku-band (13-17.5 GHz), and millimeter wave band (25-39 GHz).

View Article and Find Full Text PDF

The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.

View Article and Find Full Text PDF

This study presents the design and analysis of a compact 28 GHz MIMO antenna for 5G wireless networks, incorporating simulations, measurements, and machine learning (ML) techniques to optimize its performance. With dimensions of 3.19 λ₀ × 3.

View Article and Find Full Text PDF

In this paper, a miniaturized 2 × 2 MIMO dual-wideband ground radiation antenna targeting Wi-Fi 6/6E/7 standards using 2.4 GHz, 5 GHz, and 6 GHz frequency bands with sufficient antenna performance was designed. The proposed antenna system contains four identical 4 mm × 6 mm antennas of the internal loop type and two identical 6 mm × 6 mm isolators containing lumped LC elements.

View Article and Find Full Text PDF

Self-induced optical non-reciprocity.

Light Sci Appl

January 2025

CAS Key Laboratory of Quantum Information & CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.

Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field has attracted increasing research interest in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!