Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multi-junction solar cells allow to utilize sunlight more effectively than single junction solar cells. In this work, we present optical simulations of III-V-on-silicon solar cells with a metal grating at the back, which experimentally have reached more than 33% power conversion efficiency. First, we perform simulations with the finite element method and compare them with experimental data to validate our model. We find that accurately modeling the investigated geometrical structure is necessary for best agreement between simulation and experimental measurements. Then, we optimize the grating for maximized light trapping using a computationally efficient Bayesian optimization algorithm. The photo current density of the limiting silicon bottom cell is improved from 13.48 mA/cm for the experimental grating to 13.85 mA/cm for the optimized metal grating. Investigation of all geometrical optimization parameters of the grating (period, height,…) shows that the structure is most sensitive towards the period, a parameter highly controllable in manufacturing by inference lithography. The results show a pathway to exceed the current world record efficiency of the III-V-on-silicon solar cell technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.426761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!