Fabry-Perot (FP) etalons, composed of two parallel mirrors, are used widely as optical filters and sensors. In certain applications, however, such as when FP etalons with polymer cavities are used to detect ultrasound, the mirrors may not be perfectly parallel due to manufacturing limitations. As little is known about how the mirrors being non-parallel impacts upon FP etalon performance, it is challenging to optimize the design of such devices. To address this challenge, we developed a model of light propagation in non-parallel FP etalons. The model is valid for arbitrary monochromatic beams and calculates both the reflected and transmitted beams, assuming full-wave description of light. Wavelength resolved transmissivity simulations were computed to predict the effect that non-parallel mirrors have on the sensitivity, spectral bandwidth and peak transmissivity of FP etalons. Theoretical predictions show that the impact of the non-parallel mirrors increases with both mirror reflectivity and incident Gaussian beam waist. Guidelines regarding the maximum angle allowed between FP mirrors whilst maintaining the sensitivity and peak transmissivity of a parallel mirror FP etalon are provided as a function of mirror reflectivity, cavity thickness and Gaussian beam waist. This information, and the model, could be useful for guiding the design of FP etalons suffering a known degree of non-parallelism, for example, to optimize the sensitivity of polymer based FP ultrasound sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.425487 | DOI Listing |
Sensors (Basel)
November 2024
School of Science, Hubei University of Technology, Wuhan 430068, China.
Various sensor applications have been developed for protection against hazardous environments, and research on functional materials to enhance performance has also been pursued. The M13 bacteriophage (M13) has found utility in sensor applications like disease diagnosis and detection of harmful substances due to its potential for controlling interaction with target substances through adjustments in electrochemical and mechanical properties via genetic engineering technology. However, while optimizing reactivity or binding affinity between M13 and target materials is crucial for sensor performance enhancement, precise dynamic measurement methods for this were lacking.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.
Classical frequency-stabilized lasers have achieved high-frequency stability and reproducibility; however, their extensive wavelength spacing limits their utility in various scenarios. This study introduces a novel frequency-stabilized laser scheme that integrates a Fabry-Perot etalon (FPE) with digital control technology and wavelength modulation techniques. The FPE, characterized by multiple transmission peaks at minimal frequency intervals, provides stable frequency references for different lasers, thereby enhancing the system's flexibility and adaptability.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Jerusalem College of Technology, Israel. Electronic address:
Raman spectroscopy is an extremely powerful laser-based method for characterizing materials based on their unique inelastic scattering spectrum. Ultimately, the power of the technique is limited by the resolution of the spectrometer. Here we introduce a new method for achieving Super-Spectral-Resolution Raman Spectroscopy (SSR-RS), by angle-tuning a Fabry-Pérot (F-P) etalon filter that we incorporated in a micro-Raman setup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!