Boosting nonlinear frequency conversions with plasmonic nanostructures at near-ultraviolet (UV) frequencies remains a great challenge in nano-optics. Here we experimentally design and fabricate a plasmon-enhanced second-harmonic generation (PESHG) platform suitable for near-UV frequencies by integrating aluminum materials with grating configurations involved in structural heterogeneity. The SHG emission on the proposed platform can be amplified by up to three orders of magnitude with respect to unpatterned systems. Furthermore, the mechanism governing this amplification is identified as the occurrence of quasi-Bragg plasmon modes near second-harmonic wavelengths, such that a well-defined coherent interplay can be attained within the hot spot region and facilitate the efficient out-coupling of local second-harmonic lights to the far-field. Our work sheds light into the understanding of the role of grating-coupled surface plasmon resonances played in PESHG processes, and should pave an avenue toward UV nanosource and nonlinear metasurface applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.427717DOI Listing

Publication Analysis

Top Keywords

quasi-bragg plasmon
8
plasmon modes
8
plasmon-enhanced second-harmonic
8
second-harmonic generation
8
near-ultraviolet frequencies
8
modes highly
4
highly efficient
4
efficient plasmon-enhanced
4
second-harmonic
4
generation near-ultraviolet
4

Similar Publications

Boosting nonlinear frequency conversions with plasmonic nanostructures at near-ultraviolet (UV) frequencies remains a great challenge in nano-optics. Here we experimentally design and fabricate a plasmon-enhanced second-harmonic generation (PESHG) platform suitable for near-UV frequencies by integrating aluminum materials with grating configurations involved in structural heterogeneity. The SHG emission on the proposed platform can be amplified by up to three orders of magnitude with respect to unpatterned systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!