A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Triacontanol attenuates drought-induced oxidative stress in Brassica juncea L. by regulating lignification genes, calcium metabolism and the antioxidant system. | LitMetric

Triacontanol attenuates drought-induced oxidative stress in Brassica juncea L. by regulating lignification genes, calcium metabolism and the antioxidant system.

Plant Physiol Biochem

Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110 025, India. Electronic address:

Published: September 2021

Effect of triacontanol on drought-induced stress was studied in Brassica juncea L. Foliage of sixteen-days-old plants was sprayed with concentrations (0, 10, 20 and 30 μM) of triacontanol (TRIA) for 7 days. Subsequently, plants were subjected to drought stress (10% polyethylene glycol, PEG6000) for 7 days. Drought stress increased oxidative stress (TBARS, O and HO), however, their contents were reduced by TRIA. Total soluble sugars, reduced glutathione, and proline content in stressed plants were increased by TRIA. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and phenylalanine ammonia-lyase (PAL) activity were significantly increased in a dose-dependent manner with TRIA. Potassium (K) level declined, while magnesium (Mg) and calcium (Ca) contents increased. The elevated level of lignin under drought with TRIA was significantly associated with MYB46 and PAL gene expression patterns. Altogether, our results suggest that foliar spray of 20 μM TRIA was more operative in reducing the negative impact of drought stress in B. juncea by regulating the antioxidant system, calcium, and lignification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.07.009DOI Listing

Publication Analysis

Top Keywords

drought stress
12
oxidative stress
8
brassica juncea
8
juncea regulating
8
antioxidant system
8
stress
6
tria
6
triacontanol attenuates
4
attenuates drought-induced
4
drought-induced oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!