Short-term experiment for the in situ stabilization of a polluted soil using mining and biomass waste.

J Environ Manage

INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain.

Published: October 2021

Mining and biomass waste were used to remediate a brownfield affected by As, Cd, Cu, Pb and Zn pollution in a pilot scale experiment, and a plant used for phytoremediation purposes was used as an indicator of possible toxicological effects. To carry out the experiments, plots in field conditions were treated with magnesite (mining waste), magnesite-sludge compost, and magnesite-biochar respectively, while untreated soil was used as a control. The plots were then irrigated and left for one week, after which seeds of the ryegrass Lolium perenne L. were sown. Soil properties such as metal(loid) availability, pH, phosphorus availability, total nitrogen, organic carbon, and nutrients were monitored for two months. Finally, the ryegrass was harvested and pollutant concentrations were analyzed in the aerial parts. Magnesite proved to be an excellent amendment for metal(loid) immobilization, although the notable increase in soil pH and Mg content inhibited plant growth. However, the application of magnesite in combination with the sludge compost (rich in N and P) favored plant growth and also immobilized metals, although As availability increased. In contrast, the analysis of plants in this treatment revealed lower As and metal concentrations than those grown in the untreated soil. In turn, the application of magnesite and biochar was also effective in reducing metal(loid) availability; however, the plants did not grow under these conditions, probably due to the low N and P content of biochar. In this regard, the combined application of mining waste and sludge compost emerges as a useful nature-based solution for soil remediation in the context of the circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113179DOI Listing

Publication Analysis

Top Keywords

mining biomass
8
biomass waste
8
mining waste
8
untreated soil
8
metalloid availability
8
plant growth
8
application magnesite
8
sludge compost
8
soil
6
short-term experiment
4

Similar Publications

To select the mycorrhizal seedlings of with excellent Cd-resistance and explore the mechanism of promoting the resistance to Cd stress of , nine species of isolated from different hosts infected to form mycorrhizal seedlings, were cultured in Cd-contaminated soil for three months. We conducted the principal component analysis (PCA) on biomass, root structure, and photosynthesis, and evaluated the Cd tolerance of mycorrhizal seedlings by membership function. The results showed that dry and fresh weight of mycorrhizal seedlings under Cd stress were 1.

View Article and Find Full Text PDF

Cadmium (Cd) and arsenic (As) often coexist in water and agricultural soils around mining areas, and it is difficult to remove them at the same time due to their opposite chemical behaviors. Therefore, this study employed a co-precipitation-pyrolysis method to synthesize silica-based magnetic biochar (SMB) materials for the remediation of water contaminated with both Cd and As. The optimization of preparation conditions involved introducing three different types of silicates (NaSiO, CaSiO,and SiO) into the biomass-magnetite mixture, followed by pyrolysis at various temperatures (300℃, 500℃, and 700℃), and the optimal preparation conditions were determined based on the composite batch experiments.

View Article and Find Full Text PDF

Field data on diversity and vegetation structure of natural regeneration in a chronosequence of abandoned gold-mining lands in a tropical Amazon forest.

Data Brief

December 2024

Departamento Académico de Ingeniería Forestal y Medio Ambiente, Universidad Nacional Amazónica de Madre Dios, Av. Jorge Chavez 1160, Puerto Maldonado 17001, Peru.

Anthropogenic activities (e.g., logging, gold-mining, agriculture, and uncontrolled urban expansion) threaten the forests in the southeast of the Peruvian Amazon, one of the most diverse ecosystems worldwide.

View Article and Find Full Text PDF

Selectivity promotion of Cu by manganese oxide in hydrogenative ring opening of furfural to pentanediols.

Chem Commun (Camb)

December 2024

National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.

This work reports a targeted activation of C-O-C of furfural alcohol (FA) to produce pentanediols (PeDs) over MnO-modified Cu. Infrared spectroscopy revealed the strong interaction of the furan ring and C-O-C of FA with the catalyst surface in a preferred flat adsorption configuration, thus facilitating the activation and cleavage of C-O-C to form PeDs.

View Article and Find Full Text PDF

Agro-industrial wastes and their application perspectives in metal decontamination using biocomposites and bacterial biomass: a review.

World J Microbiol Biotechnol

December 2024

Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio s/n, entre Reforma y Sahuaripa, Edificio 7G, Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.

Contamination of water bodies is a significant global issue that results from the deliberate release of pollutants into the environment, especially from mining and metal processing industries. The main pollutants generated by these industries are metallic wastes, particularly metals, which can cause adverse effects on the environment and human health. Therefore, it is crucial to develop effective and sustainable approaches to prevent their discharge into the environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!