Microplastics are small (<5 mm) fragments of plastic debris that are ubiquitous in oceans and terrestrial ecosystems. Studies on microplastics in sediment and soil matrices are particularly challenging because of the need to separate the plastics from the sediments. We investigated the efficiencies of 18 combinations of six extracting solutions (ESs) (oil, water, oil-in-water, NaCl, oil-in-NaCl, and NaI) and three isolation methods (IMs) (hand stirring, centrifugation, and aeration) for fine and coarse sediments, with low and high density polymers. IMs did not affect the extraction efficiency. Except in case of oil, all ESs enabled good extraction (84 ± 17%) of light polymers (PE and PE-ABS). NaI presented the best extraction efficiency (71 ± 17%) for the densest polymers (PET, PES, and PA). For these ESs, fibers were extracted at a lower efficiency than pellets and fragments, and sediment gran size did not affect the extraction. For other ESs, mean extraction rates ranged from 5% to 48%. Overall, the extraction efficiencies were lower than those found in the literature, despite repeating the separation process three times. The collection of floating materials remained a problem, as plastics tended to adhere to the glass wall. Our work will help the comparability between previous and future monitoring results and the selection of the most suitable protocols for future studies. This work clearly demonstrates also that there is no robust protocol for extracting all types and forms of microplastics from fine sediments and that research efforts to arrive at a reliable method remain by taking account the interaction of MPs with other particles as well as the electrostatic properties of MP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126571 | DOI Listing |
Integr Environ Assess Manag
January 2025
Mu Gamma Consultants Pvt. Ltd, Gurgaon, India, 122018.
Microplastics (MPs) have become a notable concern and are released into the environment through the disposal or fragmentation of large plastics. Rivers have been the major pathways for MPs present in the oceans, which significantly affects the marine environment. In the current study, water samples were collected from the upper stream and downstream of Damanganga and Tapi rivers across different sites in the state of Gujarat, India for exploration of MPs contamination.
View Article and Find Full Text PDFToxics
December 2024
Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, Via Prov. Lecce-Monteroni, 73100 Lecce, Italy.
The various forms of anthropogenic pollution are regarded as a serious threat to marine coastal areas. The overproduction and mismanagement of petroleum derivatives, such as tar and plastics, have resulted in a significant correlation between these two pollutants. The aggregation of tar, microplastics (MPs), and natural materials can create plastitar blocks, which are common in coastal areas.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
Humans are constantly exposed to micro- and nanosized plastics (MNPs); however, there is still limited understanding of their fate within the body, partially due to limitations with current analytical techniques. The current study assessed the appropriateness of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis for the quantification of a range of polymers in human blood. An extraction protocol that reduced matrix interferences (false positives) of polyethylene (PE) and polyvinyl chloride (PVC) was developed and validated.
View Article and Find Full Text PDFEnviron Res
January 2025
Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, Netherlands.
Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
Naturally weathered polypropylene (NWPP) samples are useful for investigating the effects of various degradation factors that cannot be obtained in artificial laboratory experiments. In this study, NWPP samples were extracted from beach sediments (Ashiya, Hyogo, Japan). Raman and attenuated total reflection (ATR)-Fourier-transform infrared (FTIR) spectroscopies were used to analyze variations in the composition, crystallinity, orientation, and degradation of NWPP microplastics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!