A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the presence of microplastic particles in Tunisian agriculture soils and their potential toxicity effects using Eisenia andrei as bioindicator. | LitMetric

Assessing the presence of microplastic particles in Tunisian agriculture soils and their potential toxicity effects using Eisenia andrei as bioindicator.

Sci Total Environ

Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia.

Published: November 2021

In the present study, we investigated microplastics (MPs) in agricultural soils with different agronomic practices (organic farming, soil under greenhouses, soil under mulching and soil irrigated with treated wastewater (TWW)). Plastic particles from each site were collected and characterized by FTIR and Raman microspectroscopy. Plastic particles were then ground and added (size rage under 100 μm) at a concentration of 100 μg kg to soils from organic farming containing Eisenia andrei for 7 and 14 days. MPs accumulation in earthworms was quantified and characterized. Oxidative stress was assessed by evaluating the activities of catalase, glutathione-S-transferase, and acetylcholinesterase as well as malondialdehyde accumulation. Our results revealed higher quantity of MPs in soils ranging from 13.21 ± 0.89 to 852.24 ± 124.2 items kg with the dominance of small sizes (0.22-1.22 μm). Polyethylene (PE) and polybutyrate adipate terephtalate (PBAT) were the dominant MPs. Moreover, our results revealed a significant ingestion of MPs in earthworms with values ranging from 1.13 to 35.6, characterized mostly by PE, PBAT and polypropylene (PP). Biochemical data revealed an important alteration in worms exposed to MPs from soils with mulching and irrigated with TWW. Our study provides new insights into the effects of microplastic in earthworms and thus the vulnerability of terrestrial ecosystem to this emergent contaminant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148959DOI Listing

Publication Analysis

Top Keywords

eisenia andrei
8
organic farming
8
plastic particles
8
mps soils
8
mps
6
soils
5
assessing presence
4
presence microplastic
4
microplastic particles
4
particles tunisian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!