A nano-sized thin film layer of phosphorus-dysprosium doped silicon oxide (SiO:P,Dy) was successfully synthesized using the sol-gel method combined with spin coating technique. The surface morphology, structure, and luminescence properties of the synthesized thin film were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR), and Photoluminescence (PL). The average surface roughness was measured as 22.04 nm. The optical band gaps, E, of the samples were estimated using the Tauc model. A relatively good tensile strength between layers of the thin film of 10-SiO:P,Dy at 450 °C was observed. The characteristic main emission lines of Dy for the 10 and 15 times coated samples were measured at 2.16 eV and 1.98 eV originated from the F → H and F → H transitions, respectively. The thermoluminescence of 10- SiO:P,Dy thin films annealed at 1000 °C exhibits generally broad TL glow curves peaking at 260 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2021.109857DOI Listing

Publication Analysis

Top Keywords

thin film
12
structure luminescence
8
luminescence properties
8
siopdy nano-thin
4
film
4
nano-thin film
4
film phosphor
4
phosphor synthesis
4
synthesis structure
4
properties nano-sized
4

Similar Publications

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.

View Article and Find Full Text PDF

For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.

View Article and Find Full Text PDF

Nanosecond Nanothermometry in an Electron Microscope.

Nano Lett

January 2025

University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.

Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.

View Article and Find Full Text PDF

Lithium niobate (LiNbO) has shown great potential for applications in nonlinear metasurfaces, thanks to its large second-order nonlinear coefficients and high integration capabilities. Optical resonances play a crucial role in further enhancing the nonlinear optical responses of LiNbO metasurfaces (LNMS). In this study, both numerically and experimentally, we designed and fabricated a metasurface structure that supports toroidal dipole (TD) resonance to enhance second-harmonic generation (SHG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!