Objective: Central CO chemoreception (CCR), a major chemical drive for breathing, can be quantified with a CO re-breathing test to measure the hypercapnic ventilatory response (HCVR). An attenuated HCVR correlates with the severity of respiratory dysfunction after generalized convulsive seizures and is a potential biomarker for sudden unexpected death in epilepsy (SUDEP) risk. Vagus nerve stimulation (VNS) may reduce SUDEP risk, but for unclear reasons the risk remains higher during the first 2 years after implantation. The vagus nerve has widespread connections in the brainstem, including key areas related to CCR. Here we examined whether chronic electrical stimulation of the vagus nerve induces changes in CCR.
Methods: We compared the HCVR in epilepsy patients with or without an active VNS in a sex- and age-matched case-control study. Eligible subjects were selected from a cohort of patients who previously underwent HCVR testing. The HCVR slope, change in minute ventilation (VE) with respect to change in end tidal (ET) CO2 (∆ VE/ ∆ ETCO2) during the test was calculated for each subject. Key variables were compared between the two groups. Univariate and multivariate analyses were carried out for HCVR slope as dependent variable.
Results: A total of 86 subjects were in the study. HCVR slope was significantly lower in the cases compared to the controls. Cases had longer duration of epilepsy and higher number of anti-epileptic drugs (AEDs) tried during lifetime. Having active VNS and ETCO2 were associated with a low HCVR slope while high BMI was associated with high HCVR slope in both univariate and multivariate analyses.
Discussion: We found having an active VNS was associated with relatively attenuated HCVR slope. Although duration of epilepsy and number of AEDs tried during lifetime was significantly different between the groups, they were not predictors of HCVR slope in subsequent analysis.
Conclusion: Chronic electrical stimulation of the vagus nerve by VNS may be associated with an attenuated CCR [Correction added on 24 November 2021, after first online publication: The preceding sentence has been revised from “Chronic electrical stimulation of VNS nerve by VNS…”]. A larger prospective study may help to establish the time course of this effect in relation to the time of VNS implantation, whether there is a causal relationship, and determine how it affects SUDEP risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113047 | PMC |
http://dx.doi.org/10.1111/epi.16997 | DOI Listing |
J Appl Physiol (1985)
August 2024
Division of Biomedical Sciences, School of MedicineUniversity of California, Riverside, California, United States.
Ventilatory responses to hypoxia and hypercapnia play a vital role in maintaining gas exchange homeostasis and in adaptation to high-altitude environments. This study investigates the mechanisms underlying sensitization of hypoxic and hypercapnic ventilatory response (HVR and HCVR, respectively) in individuals acclimatized to moderate high altitude (3,800 m). Thirty-one participants underwent chemoreflex testing using the Duffin-modified rebreathing technique.
View Article and Find Full Text PDFEpilepsia
September 2023
Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
Objective: Severe respiratory dysfunction induced by generalized convulsive seizures (GCS) is now thought to be a common mechanism for sudden unexpected death in epilepsy (SUDEP). In a mouse model of seizure-induced death, increased interictal respiratory variability was reported in mice that later died of respiratory arrest after GCS. We studied respiratory variability in epilepsy patients as a predictive tool for severity of postictal hypoxemia, a potential biomarker for SUDEP risk.
View Article and Find Full Text PDFiScience
April 2023
Department of Anesthesiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
Opioids are commonly used painkillers and drugs of abuse and have serious toxic effects including potentially lethal respiratory depression. It remains unknown which respiratory parameter is the most sensitive biomarker of opioid-induced respiratory depression (OIRD). To evaluate this issue, we studied 24 volunteers and measured resting ventilation, resting end-tidal PCO (PCO) and the hypercapnic ventilatory response (HCVR) before and at 1-h intervals following intake of the opioid tapentadol.
View Article and Find Full Text PDFEpilepsia
September 2021
Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
Objective: Central CO chemoreception (CCR), a major chemical drive for breathing, can be quantified with a CO re-breathing test to measure the hypercapnic ventilatory response (HCVR). An attenuated HCVR correlates with the severity of respiratory dysfunction after generalized convulsive seizures and is a potential biomarker for sudden unexpected death in epilepsy (SUDEP) risk. Vagus nerve stimulation (VNS) may reduce SUDEP risk, but for unclear reasons the risk remains higher during the first 2 years after implantation.
View Article and Find Full Text PDFEpilepsia
March 2019
Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa.
Objective: Severe periictal respiratory depression is thought to be linked to risk of sudden unexpected death in epilepsy (SUDEP) but its determinants are largely unknown. Interindividual differences in the interictal ventilatory response to CO (hypercapnic ventilatory response [HCVR] or central respiratory CO chemosensitivity) may identify patients who are at increased risk for severe periictal hypoventilation. HCVR has not been studied previously in patients with epilepsy; therefore we evaluated a method to measure it at bedside in an epilepsy monitoring unit (EMU) and examined its relationship to postictal hypercapnia following generalized convulsive seizures (GCSs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!