Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lane detection in complex road scenes is still a challenging task due to poor lighting conditions, interference of irrelevant road markings or signs, etc. To solve the problem of lane detection in the various complex road scenes, we proposed a geometric attention-aware network (GAAN) for lane detection. The proposed GAAN adopted a multi-task branch architecture, and used the attention information propagation (AIP) module to perform communication between branches, then the geometric attention-aware (GAA) module was used to complete feature fusion. In order to verify the lane detection effect of the proposed model in this paper, the experiments were conducted on the CULane dataset, TuSimple dataset, and BDD100K dataset. The experimental results show that our method performs well compared with the current excellent lane line detection networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282020 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254521 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!