Photodynamic therapy (PDT), which involves the photoinduced sensitization of singlet oxygen, is an attractive treatment for certain types of cancer. The development of new photochemotherapeutic agents remains an important area of research. Macrocyclic tetrapyrrole compounds including porphyrins, phthalocyanines, chlorins, and bacteriochlorins have been pursued as sensitizers of singlet oxygen for PDT applications but historically are difficult to prepare/purify and can also suffer from high nonspecific dark toxicity, poor solubility in biological media, and/or slow clearance from biological tissues. In response to these shortcomings, we have developed a series of novel linear tetrapyrrole architectures complexed to late transition metals as potential PDT agents. We find that these dimethylbiladiene () tetrapyrrole complexes can efficiently photosensitize generation of O oxygen upon irradiation with visible light. To extend the absorption profile of the platform, alkynyl-aryl groups have been conjugated to the periphery of the tetrapyrrole using Sonogashira methods. Derivatives of this type containing ancillary phenyl (), naphthyl (), and anthracenyl () groups have been prepared and characterized. In addition to structurally characterizing and , we find that extension of the tetrapyrrole conjugation successfully red-shifts the absorption of the family of biladienes further into the phototherapeutic window (i.e., 600-900 nm). Photochemical sensitization studies demonstrate that our series of new palladium biladiene complexes () can sensitize the formation of O with quantum yields in the range Φ = 0.59-0.73 upon irradiation with light of λ ≥ 650 nm. The improved absorption properties of the complexes in the phototherapeutic window, together with their high O quantum yields, highlight the promise of these compounds as potential agents for PDT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c01127DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
phototherapeutic window
8
quantum yields
8
tetrapyrrole
5
synthesis spectroscopic
4
spectroscopic sensitization
4
sensitization characteristics
4
characteristics extended
4
extended pdii
4
pdii 1010-dimethylbiladiene
4

Similar Publications

ZnO-CoO material was successfully synthesized by the co-precipitation method and used as a catalyst for the removal of diclofenac sodium (DCF). ZnO-CoO exhibited higher catalytic activity in the catalytic process compared to the photocatalytic processes. Under optimum conditions, the activation of peroxymonosulfate (PMS) by ZnO-CoO achieved approximately 99% removal of DCF, confirming the effective adsorption and activation of PMS.

View Article and Find Full Text PDF

The utilization of redox mediators (RMs) in lithium-oxygen batteries (LOBs) has underscored their utility in high overpotential during the charging process. Among the currently known RMs, it is exceptionally challenging to identify those with a redox potential capable of attenuating singlet oxygen (O) generation while resisting degradation by reactive oxygen species (ROS), such as O and superoxide (O ). In this context, computational and experimental approaches for rational molecular design have led to the development of 7,7'-bi-7-azabicyclo[2.

View Article and Find Full Text PDF

X-ray induced photodynamic therapy (XPDT) utilizes self-lighting nanoparticles to combine the benefits of radiotherapy and photodynamic therapy. These nanomaterials transform X-ray to visible light that can be absorbed by nearby photosensitizers and in the presence of surrounding oxygen molecules generates reactive oxygen species, which are very toxic to the cells. Despite many studies conducted on modelling XPDT, little focused on the contribution of each component as well as their synergy effects.

View Article and Find Full Text PDF

A pair of aza-BODIPY isomers, 1,7-di--butyl-3,5-dinaphthyl (Nap-BDP) and 1,7-dinaphthyl-3,5-di--butyl (revNap-BDP), were prepared in this study. According to the single crystal X-ray analysis, Nap-BDP exhibited an orthogonal structure. Owing to the difference in orthogonality and -Bu rotation between Nap-BDP and revNap-BDP, their spectral performances, including maximum absorption and emission, full width at half maximum, fluorescence quantum yield, photostability, singlet oxygen generation and photothermal conversion efficiency, were obviously different.

View Article and Find Full Text PDF

Fluorination of Aza-BODIPY for Cancer Cell Plasma Membrane-Targeted Imaging and Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.

Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!