The risk of seizures is 10-fold higher in patients with Alzheimer's disease than the general population, yet the mechanisms underlying this susceptibility and the effects of these seizures are poorly understood. To elucidate the proposed bidirectional relationship between Alzheimer's disease and seizures, we studied human brain samples (n = 34) from patients with Alzheimer's disease and found that those with a history of seizures (n = 14) had increased amyloid-β and tau pathology, with upregulation of the mechanistic target of rapamycin (mTOR) pathway, compared with patients without a known history of seizures (n = 20). To establish whether seizures accelerate the progression of Alzheimer's disease, we induced chronic hyperexcitability in the five times familial Alzheimer's disease mouse model by kindling with the chemoconvulsant pentylenetetrazol and observed that the mouse model exhibited more severe seizures than the wild-type. Furthermore, kindled seizures exacerbated later cognitive impairment, Alzheimer's disease neuropathology and mTOR complex 1 activation. Finally, we demonstrated that the administration of the mTOR inhibitor rapamycin following kindled seizures rescued enhanced remote and long-term memory deficits associated with earlier kindling and prevented seizure-induced increases in Alzheimer's disease neuropathology. These data demonstrated an important link between chronic hyperexcitability and progressive Alzheimer's disease pathology and suggest a mechanism whereby rapamycin may serve as an adjunct therapy to attenuate progression of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126019PMC
http://dx.doi.org/10.1093/brain/awab268DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
36
disease
10
alzheimer's
9
seizures
9
patients alzheimer's
8
history seizures
8
chronic hyperexcitability
8
mouse model
8
kindled seizures
8
disease neuropathology
8

Similar Publications

Major depressive disorder (MDD) is defined by an array of symptoms that make it challenging to understand the condition at a population level. Subtyping offers a way to unpick this phenotypic diversity for improved disorder characterisation. We aimed to identify depression subtypes longitudinally using the Inventory of Depressive Symptomatology: Self-Report (IDS-SR).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with cognitive impairments which are linked to a deficit in cholinergic function. The objective of this study was to evaluate the ability of TeMac™ to prevent memory impairment in scopolamine-rats model of Alzheimer's disease and by in silico approaches to identify molecules in TeMac™ inhibiting acetylcholinesterase. The cholinergic cognitive dysfunction was induced by intraperitoneal injection of scopolamine (1 mg/kg daily) in male Wistar rats for seven consecutive days.

View Article and Find Full Text PDF

Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.

View Article and Find Full Text PDF

Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.

View Article and Find Full Text PDF

Multimodal imaging of murine cerebrovascular dynamics induced by transcranial pulse stimulation.

Alzheimers Dement

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.

Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!