We report the formation of high optical power microlenses in the near-surface region of the liquid crystal layer. Such microlenses, possessing a very small focal length at a rather large aperture A (/∼2), are able to focus the light into spots of a characteristic size comparable with the wavelength. Using numerical modeling, a specific patterning profile of a liquid crystal (LC) alignment surface by an ion beam is proposed to provide the aligning properties necessary for the formation of an array of microlenses with a focal length comparable to the LC cell thickness. The proposed microlens arrays are produced, and their optical properties are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.426904DOI Listing

Publication Analysis

Top Keywords

liquid crystal
12
ion beam
8
focal length
8
microlenses
4
crystal microlenses
4
microlenses based
4
based binary
4
binary surface
4
surface alignment
4
alignment controlled
4

Similar Publications

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF

With the gradual application of enhanced oil recovery by CO (CO-EOR), the rheological behavior of produced fluid is altered due to CO dissolution and degassing. This work focuses on the composition, physical properties, gelation and yield characteristics, and viscosity-temperature properties of crude oil containing paraffinic wax after CO treatment. Special attention is given to the effect of the phase state of CO.

View Article and Find Full Text PDF

Objectives: To evaluate the accuracy (trueness and precision) of liquid crystal display (LCD)-printed orthognathic surgical splints under two different post-processing conditions-rinsing solvent and post-polymerization time.

Materials And Methods: An LCD 3D printer was used to create 48 surgical splints using the same reference standard tessellation language (STL) files. They were randomly assigned to two experimental studies.

View Article and Find Full Text PDF

Lattice structures are an innovative solution to increase the strength-to-weight ratio of a structure. In this study, two polymeric hybrid lattice structures-"FRB" (a heterogenous structure which is indeed a BCC structure reinforced by FCC unit cells dispersed in a way to form a chessboard pattern in each layer) and the "Multifunctional" (a homogenous structure whose unit cells are a combination of FCC and BCC unit cells where their central nodes are connected)-are proposed, fabricated via liquid crystal display 3D printing technique, and their mechanical characteristics are evaluated under quasi-static loading, experimentally and numerically. The results indicate a 15.

View Article and Find Full Text PDF

Understanding and controlling the morphology of microgels is crucial for optimizing their properties and functions in diverse areas of application. The fabrication of microgels that exhibit both structural and chemical anisotropy using a template-free approach faces significant challenges. Existing approaches toward such microgels are typically limited to templating methods with low throughput.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!