We propose a nonlinear fiber system for shot-noise limited, all-optical intensity noise reduction and signal amplification. The mechanism is based on the accumulation of different nonlinear phase shifts between orthogonal polarization modes in a polarization-maintaining fiber amplifier in combination with an implemented sinusoidal transmission function. The resulting correlation between the input intensity fluctuations and the system transmission enables tunable intensity noise reduction of the input pulse train. In the experiment, the noise spectral density of a mode-locked oscillator is suppressed by up to 20 dB to the theoretical shot-noise limit of the measurement at -151.1/ with simultaneous pulse amplification of 13.5 dB.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.431861DOI Listing

Publication Analysis

Top Keywords

intensity noise
12
nonlinear fiber
8
fiber system
8
system shot-noise
8
shot-noise limited
8
noise reduction
8
intensity
4
limited intensity
4
noise
4
noise suppression
4

Similar Publications

To suppress the significant vibration line spectra of piping systems under multi-frequency harmonic excitations, a novel dynamic vibration absorber (NDVA) is designed. The NDVA integrates numerous independent resonant units within a finite space through an ingenious structural design and possesses rich frequency regulation characteristics. A vibration model of the piping system equipped with the NDVA is established, and the approximate equivalent parameters of both the piping and the resonant units are inverted based on the frequency response function (FRF) test results.

View Article and Find Full Text PDF

With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored.

View Article and Find Full Text PDF

Positron-emission tomography (PET) offers high sensitivity for cancer diagnosis. However, small-molecule-based probes often exhibit insufficient accumulation in tumor sites, while nanoparticle-based agents typically have limited delivery efficiency. To address this challenge, this study proposes a novel PET imaging probe, Ga-CBT-PSMA, designed for prostate cancer.

View Article and Find Full Text PDF

The fluorescence detection of amino compounds and the evaluation of their content in environmental samples are vital, not only for assessing food quality but also for studying soil organic matter. Here, we present the synthesis and application of a novel fluorescent probe, 4-(9-acridone)benzylmethyl carbonochloride (APE-Cl), for detecting amino compounds via a chloroformate reaction with fluorescence detection. The complete derivatization reaction of APE-Cl with amino compounds can be accomplished in aqueous acetonitrile within 5 min at room temperature, using 0.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!