A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Review on Li /H Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water. | LitMetric

Garnet-based Li-ion conductors are one of the most promising oxide-ceramic solid electrolytes for next-generation Li batteries. However, they undergo a Li /H exchange (LHX) reaction with most protic solvents used in component manufacturing routes and even with moisture in ambient air. These protonated garnets show a lower Li-ionic conductivity, and even if only the surface is protonated, this degraded layer hinders the Li-ion exchange with, for example, a metallic Li anode. Furthermore, the resulting unstable surface properties during the processing in air lead to challenges with respect to reproducibility of the final component performance, limiting their commercial applicability. However, in recent years, the knowledge about the underlying chemical mechanisms has led to the development of mitigation strategies and enabled a push of this promising material class towards sustainable and scalable fabrication routes. This Minireview covers the following four aspects, which are relevant for a comprehensive understanding of these developments: (1) reports of LHX phenomenon in garnets exposed to air and solvents; (2) recent understandings of the fundamentals and properties of LHX; (3) strategies to prevent LHX and to recover garnets; and (4) sustainable application of LHX for material processing and energy-related devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597127PMC
http://dx.doi.org/10.1002/cssc.202101178DOI Listing

Publication Analysis

Top Keywords

solid electrolytes
8
lhx
5
review exchange
4
exchange garnet
4
garnet solid
4
electrolytes instability
4
instability humidity
4
humidity sustainable
4
sustainable processing
4
processing water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!