The PolyOculus technology produces large-area-equivalent telescopes by using fiber optics to link modules of multiple semi-autonomous, small, inexpensive, commercial-off-the-shelf telescopes. Crucially, this scalable design has construction costs that are >10× lower than equivalent traditional large-area telescopes. We have developed a novel, to the best of our knowledge, photonic lantern approach for the PolyOculus fiber optic linkages that potentially offers substantial advantages over previously considered free-space optical linkages, including much higher coupling efficiencies. We have carried out the first laboratory tests of a photonic lantern prototype developed for PolyOculus, and demonstrated broadband efficiencies of ∼91, confirming the outstanding performance of this technology.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.424152DOI Listing

Publication Analysis

Top Keywords

photonic lantern
12
demonstration high-efficiency
4
high-efficiency photonic
4
lantern couplers
4
polyoculus
4
couplers polyoculus
4
polyoculus polyoculus
4
polyoculus technology
4
technology produces
4
produces large-area-equivalent
4

Similar Publications

An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.

View Article and Find Full Text PDF

Wave-particle duality is one of the most notable and counterintuitive features of quantum mechanics, illustrating that two incompatible observables cannot be measured simultaneously with arbitrary precision. In this work, we experimentally demonstrate the equivalence of wave-particle duality and entropic uncertainty relations using orbital angular momentum (OAM) states of light. Our experiment uses an innovative and reconfigurable platform composed of few-mode optical fibers and photonic lanterns, showcasing the versatility of this technology for quantum information processing.

View Article and Find Full Text PDF

We present several nonlinear wavefront sensing techniques for few-mode sensors, all of which are empirically calibrated and agnostic to the choice of wavefront sensor. The first class of techniques involves a straightforward extension of the linear phase retrieval scheme to higher order; the resulting Taylor polynomial can then be solved using the method of successive approximations, though we discuss alternate methods such as homotopy continuation. In the second class of techniques, a model of the WFS intensity response is created using radial basis function interpolation.

View Article and Find Full Text PDF

A photonic lantern is a low-loss device that connects a single multimode waveguide to multiple single-mode waveguides and can enhance the beam quality of a fiber laser by adaptively controlling the optical parameters (amplitude, phase, polarization) at the input. In this work, we combined the gains and losses of individual modes within the fiber amplifier and introduced a mode content parameter at the amplifier's output as an evaluation function to simulate mode control effects. Mode competition within the gain fiber can degrade the control effect of the fundamental mode and lead to it taking a longer time for the control to converge.

View Article and Find Full Text PDF

We report a method for generating uniform, artifact-free total internal reflection fluorescence (TIRF) excitation via a photonic lantern. Our tapered waveguide, consisting of a multimode input and nine few-mode outputs, enables single-shot TIRF illumination from nine azimuthal directions simultaneously without the introduction of nonstationary devices. Utilizing the photonic lantern for multi-beam excitation provides a low-loss mechanism that supports a wide range of light sources, including high-coherence lasers and various wavelengths in the visible spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!