Large diameter, high-harmonic diffractive lenses could find applications in future space telescopes. Residual chromatic aberrations from these lenses can cause significant blurring. Solutions to reduce chromatic dispersion and other aberrations to diffraction-limited performance are discussed. A design example based on a 240-mm-diameter, 1-m focal length multi-order diffractive engineered lens operating over the astronomical R-Band (589-727 nm) is presented. The design example uses a relay subsystem with four times smaller diameter than the primary. This color corrector includes both refractive and diffractive optical elements and reduces the longitudinal chromatic aberrations by more than a factor of 30 compared to the primary lens alone, while maintaining the effective focal length and numerical aperture of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.421032 | DOI Listing |
Nature
January 2025
Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.
Extreme ultraviolet pulses as generated by high harmonic generation (HHG) are a powerful tool for both time-resolved spectroscopy and coherent diffractive imaging. However, the integration of spectroscopy and microscopy to harness the unique broadband spectra provided by HHG is hardly explored due to the challenge to decouple spectroscopic and microscopic information. Here, we present an interferometric approach to this problem that combines Fourier transform spectroscopy (FTS) with Fourier transform holography (FTH).
View Article and Find Full Text PDFStruct Dyn
September 2024
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany.
Time-resolved soft-x-ray-diffraction experiments give access to microscopic processes in a broad range of solid-state materials by probing ultrafast dynamics of ordering phenomena. While laboratory-based high-harmonic generation (HHG) light sources provide the required photon energies, their limited photon flux is distributed over a wide spectral range, rendering typical monochromatic diffraction schemes challenging. Here, we present a scheme for energy-dispersive soft-x-ray diffraction with femtosecond temporal resolution and photon energies across the water window from 200 to 600 eV.
View Article and Find Full Text PDFLight Sci Appl
August 2024
Imaging Physics Department, Applied Science Faculty, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands.
Ptychographic extreme ultraviolet (EUV) diffractive imaging has emerged as a promising candidate for the next generationmetrology solutions in the semiconductor industry, as it can image wafer samples in reflection geometry at the nanoscale. This technique has surged attention recently, owing to the significant progress in high-harmonic generation (HHG) EUV sources and advancements in both hardware and software for computation. In this study, a novel algorithm is introduced and tested, which enables wavelength-multiplexed reconstruction that enhances the measurement throughput and introduces data diversity, allowing the accurate characterisation of sample structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!