We present the inscription of narrow-linewidth fiber Bragg gratings (FBGs) into different types of multicore fibers (MCFs) using ultrashort laser pulses and the phase mask technique, which can act as notch filters. Such filters are required, e.g., to suppress light emitted by hydroxyl in the Earth's upper atmosphere, which disturbs ground-based observation of extraterrestrial objects in the near infrared. However, the inscription into a commercially available seven-core fiber showed a quite large core-to-core deviation of the resonance wavelength of up to 0.45 nm. Two options are presented to overcome this: first, we present the photo-treatment of the FBGs to tune the resonance wavelength, which allows for sufficient resonance shifts. Second, adapted MCFs containing 12 cores, arranged on a circle, are fabricated. For this, two different fabrication procedures were investigated, namely, the mechanical drilling of the preform for a rod-in-tube version as well as a stack-and-draw approach. Both adapted MCFs yielded significant improvements with core-to-core wavelength variations of the FBGs of only about 0.18 nm and 0.11 nm, respectively, sufficient to fulfill the requirements for astronomical filter applications as discussed above.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.421089DOI Listing

Publication Analysis

Top Keywords

fiber bragg
8
bragg gratings
8
multicore fibers
8
resonance wavelength
8
adapted mcfs
8
ultrashort pulse
4
pulse written
4
written fiber
4
gratings narrowband
4
narrowband filters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!