Filtering light from a broadband source with a Fabry-Perot etalon generates comb-like peaks in the spectral domain that can serve as calibration reference for precise Doppler shift detection on astronomical spectrographs. Fiber Fabry-Perot etalons are small in size and easily aligned optically. In application, high thermal sensitivity of the fiber core material requires a highly stable temperature control system. Here, we report on the design, characterization, and thermal performance of a fiber Fabry-Perot etalon-based calibrator system insensitive to environmental temperature perturbation, aimed as a reference for ⋅ precision radial velocity measurements. A fast and simple method to estimate the etalon finesse and a dual-loop approach to achieve sub-millikelvin temperature fluctuation are proposed and demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.417586 | DOI Listing |
An ultrasensitive refractive index (RI) sensing technology based on an enhanced Vernier effect is proposed, which integrates a polymer Fabry-Perot interferometer (FPI) with an open cavity FPI on the tip of a seven-core optical fiber. Interference spectra of the polymer FPI and the open cavity FPI shift to opposite directions as the ambient RI changes, thus leading to the enhanced Vernier effect. Investigations of RI sensitivity and temperature dependence of the proposed fiber sensors are carried out.
View Article and Find Full Text PDFIn this Letter, we show the attraction of a microbubble at a fiber end face by the solute Marangoni force. The microbubble is formed by partial filling of an ethanol-water mixture in the microcavity that is spliced to the end face of a single-mode fiber. Due to different surface tension of ethanol and water, the uneven temperature gradient induced by a laser causes the non-uniform distribution of ethanol-water molecules on the bubble surface.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Research and Educational Center for Physics of Solid State Nanostructures of Lobachevsky State University of Nizhniy Novgorod, 603950 Nizhniy Novgorod, Russia.
This paper proposes and implements a novel scheme for recording signals from fibre optic sensors based on tandem low-coherence interferometry with an integrated optical reference interferometer. The circuit allows precision control of the phase shift. Additionally, the paper illustrates the potential for detecting vibration and object deformation using fibre optic Fabry-Perot sensors connected to the registration system.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.
This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A linear spot-type multipass cell-enhanced fiber-optic photoacoustic gas microprobe is proposed. To further reduce the volume of the gas chamber and enhance the photoacoustic signal, we designed the cross section of the photoacoustic tube as a slit with a height of 10 mm and a width of 1.5 mm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!