We numerically investigated a sandwiched photonic crystal fiber (S-PCF) based on triangular lattice air holes that can be used for broadband dispersion compensation. By adjusting two layers of air holes diameter in the cladding, the S-PCF performs a large negative dispersion curve that can compensate for the dispersion of a standard single-mode fiber (SMF). The kappa value of the proposed PCF is also consistent with that of the SMF at the wavelength of 1.55 µm. In addition, the dispersion compensation multiple reaches up to 25.37. We have successfully obtained an effective compensated dispersion with the value of -0.5 to +0.1// in the wavelength of 1.46-1.67 µm, which covers the +++ wavelength bands. Moreover, we considered the manufacturing tolerance of the dispersion and effective compensated dispersion with ±2 and ±5 variation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.428032 | DOI Listing |
Environ Res
January 2025
Institute of BioEconomy, National Research Council (CNR), Florence, Italy.
Background: Climate change is a fundamental threat to human health and outdoor workers are one of the most vulnerable population subgroups. Increasing heat stress and heatwaves are directly associated with the health and safety of workers for a large spectrum of occupations. Heat stress negatively affects labour supply, productivity, and workability.
View Article and Find Full Text PDFNat Commun
January 2025
Hunan University of Technology and Business, Changsha, China.
The exposure to extreme heat at workplaces poses substantial threat to human effort and manual labour. This becomes more prominent due to the global dispersion of labour-intensive production activities via trade. We combine a climate model with an input-output model to quantify the risks associated with trade-related occupational extreme heat exposure.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
Purpose: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a new cancer treatment modality that employs radium-224-loaded metal sources implanted in solid tumors to disperse alpha-emitting atoms within a therapeutic "kill-zone" of a few millimeters around each source. Preclinical studies have demonstrated tumor growth delay in various cancer types, including glioblastoma multiforme, and the method is used in clinical trials for patients with skin and head and neck cancer. This study aims to assess the safety and feasibility of implementing Alpha DaRT for brain tumor treatment in a large animal model.
View Article and Find Full Text PDFNat Commun
January 2025
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, Dresden, Germany.
Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
High-voltage LiCoO is a promising cathode material for ultrahigh-energy lithium-ion batteries, particularly in the commercialization of 5G technology. However, achieving long-term operational stability remains a significant challenge. Herein, a quaterpolymer additive with multiple functional groups is introduced to enhance the electrochemical performance of LiCoO cathode at 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!