Foxo1 deletion promotes the growth of new lymphatic valves.

J Clin Invest

Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.

Published: July 2021

Patients with congenital lymphedema suffer from tissue swelling in part due to mutations in genes regulating lymphatic valve development. Lymphatic valve leaflets grow and are maintained throughout life in response to oscillatory shear stress (OSS), which regulates gene transcription in lymphatic endothelial cells (LECs). Here, we identified the first transcription factor, Foxo1, that repressed lymphatic valve formation by inhibiting the expression of valve-forming genes. We showed that both embryonic and postnatal ablation of Foxo1 in LECs induced additional valve formation in postnatal and adult mice in multiple tissues. Our quantitative analyses revealed that after deletion, the total number of valves in the mesentery was significantly (P < 0.01) increased in the Foxo1LEC-KO mice compared with Foxo1fl/fl controls. In addition, our quantitative real-time PCR (RT-PCR) data from cultured LECs showed that many valve-forming genes were significantly (P < 0.01) upregulated upon knockdown of FOXO1. To confirm our findings in vivo, rescue experiments showed that Foxc2+/- mice, a model of lymphedema-distichiasis, had 50% fewer lymphatic valves and that the remaining valves exhibited backleak. Both valve number and function were completely restored to control levels upon Foxo1 deletion. These findings established FOXO1 as a clinically relevant target to stimulate de novo lymphatic valve formation and rescue defective valves in congenital lymphedema.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279588PMC
http://dx.doi.org/10.1172/JCI142341DOI Listing

Publication Analysis

Top Keywords

lymphatic valve
16
valve formation
12
foxo1 deletion
8
lymphatic valves
8
congenital lymphedema
8
valve-forming genes
8
lymphatic
7
foxo1
6
valve
6
valves
5

Similar Publications

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

MicroRNAs secreted by the parasitic nematode Brugia malayi disrupt lymphatic endothelial cell integrity.

PLoS Negl Trop Dis

December 2024

Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, United States of America.

Lymphatic filariasis (LF) is a neglected tropical disease affecting over 51 million people in 72 endemic countries. Causative agents of LF are mosquito-borne parasitic nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori. The adult parasites impact the integrity of lymphatic vessels and damage valves, leading to a remodeling of the lymphatic system and lymphatic dilation.

View Article and Find Full Text PDF

Lumped parameter simulations of cervical lymphatic vessels: dynamics of murine cerebrospinal fluid efflux from the skull.

Fluids Barriers CNS

December 2024

Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, USA.

Background: Growing evidence suggests that for rodents, a substantial fraction of cerebrospinal fluid (CSF) drains by crossing the cribriform plate into the nasopharyngeal lymphatics, eventually reaching the cervical lymphatic vessels (CLVs). Disruption of this drainage pathway is associated with various neurological disorders.

Methods: We employ a lumped parameter method to numerically model CSF drainage across the cribriform plate to CLVs.

View Article and Find Full Text PDF

During the last decades, the prognosis for patients with congenital heart disease (CHD) has gone through a tremendous development due to improvement in diagnostic tools, treatment, and follow-up. This has resulted in a demographic change of the population with CHD so that the number of adults exceeds that of paediatric patients. The improved survival has led to new challenges including re-interventions addressing residual lesions as well as long-term complications such as arrhythmia and heart failure.

View Article and Find Full Text PDF

A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling.

Development

November 2024

Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.

Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!