In the past decades, metasurfaces have opened up a promising venue for manipulating lights and electromagnetic (EM) waves. In the field of nonlinearity, second-harmonic generation (SHG) is a research focus due to its diverse applications. There have been many researches for realizing SHG in optical regime using nonlinear characteristics of optical materials, but its efficiency is low. In microwave frequencies, SHGs are basically studied in the guided-wave systems. Here, high-efficiency SHGs of spatial waves are presented in the microwave frequency using nonlinear metasurface loaded with active chips at the subwavelength scale. The nonlinear meta-atom is composed of receiving antenna, transmitting antenna, and active circuit of frequency multiplier, which can realize strongly nonlinear response and link the EM signals from the receiving to transmitting antennas. Correspondingly, to achieve the function of spatial-wave frequency multiplication, the working frequency of the transmitting antenna in the meta-atom should be twice as that of the receiving antenna, and hence the active chip is well matched to obtain the signal transforming with high efficiency. Good performance of the spatial-wave frequency multiplication is demonstrated in the proof-of-concept experiments with the best transform efficiency of 85.11% under normal incidence, validating the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456279PMC
http://dx.doi.org/10.1002/advs.202101212DOI Listing

Publication Analysis

Top Keywords

spatial-wave frequency
12
frequency multiplication
12
nonlinear metasurface
8
receiving antenna
8
transmitting antenna
8
antenna active
8
frequency
6
nonlinear
5
high-efficiency spatial-wave
4
multiplication nonlinear
4

Similar Publications

We consider a nearly collisionless plasma consisting of a species of "test particles" in one spatial and one velocity dimension, stirred by an externally imposed stochastic electric field-a kinetic analog of the Kraichnan model of passive advection. The mean effect on the particle distribution function is turbulent diffusion in velocity space-known as stochastic heating. Accompanying this heating is the generation of fine-scale structure in the distribution function, which we characterize with the collisionless (Casimir) invariant C_{2}∝∫∫dxdv〈f^{2}〉-a quantity that here plays the role of (negative) entropy of the distribution function.

View Article and Find Full Text PDF

Background: Dynamical mathematical models defined by a system of differential equations are typically not easily accessible to non-experts. However, forecasts based on these types of models can help gain insights into the mechanisms driving the process and may outcompete simpler phenomenological growth models. Here we introduce a friendly toolbox, SpatialWavePredict, to characterize and forecast the spatial wave sub-epidemic model, which captures diverse wave dynamics by aggregating multiple asynchronous growth processes and has outperformed simpler phenomenological growth models in short-term forecasts of various infectious diseases outbreaks including SARS, Ebola, and the early waves of the COVID-19 pandemic in the US.

View Article and Find Full Text PDF

Fourier imaging is an indirect imaging method which records the diffraction pattern of the object scene coherently in the focal plane of the imaging system and reconstructs the image using computational resources. The spatial resolution, which can be reached, depends on one hand on the wavelength of the radiation, but also on the capability to measure - in the focal plane - Fourier components with high spatial wave-vectors. This leads to a conflicting situation at THz frequencies, because choosing a shorter wavelength for better resolution usually comes at the cost of less radiation power, concomitant with a loss of dynamic range, which limits the detection of higher Fourier components.

View Article and Find Full Text PDF

In the past decades, metasurfaces have opened up a promising venue for manipulating lights and electromagnetic (EM) waves. In the field of nonlinearity, second-harmonic generation (SHG) is a research focus due to its diverse applications. There have been many researches for realizing SHG in optical regime using nonlinear characteristics of optical materials, but its efficiency is low.

View Article and Find Full Text PDF

Recently, investigation of metasurfaces has been extended to wave control through exploiting nonlinearity. Among all of the ways to achieve tunable metasurfaces with multiplexed performances, nonlinearity is one of the promising choices. Although several proposals have been reported to obtain nonlinear architectures at visible frequencies, the area of incorporating nonlinearity in form of passive-designing at microwave metasurfaces is open for investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!