Objective: This study aimed to evaluate the dosimetric properties of treatment plans obtained from three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy techniques (IMRT) plans for left chest wall breast cancer patients.
Materials And Methods: A total of 20 patients with left-sided chest wall radiotherapy were randomly selected with the dose prescriptions: 42 Gy and 45 Gy in 15 and 18 fractions, respectively. Treatment plans were obtained using 3D-CRT and IMRT for each patient. Five to seven beams were used for IMRT, while tangential beams were used for 3D-CRT. Planning target volume, D ( ), D ( ), D, Homogeneity and Conformity Indices (HI and CI) were obtained. Similarly, mean doses to organs at risk (OAR), V, V, V, V were generated from the dose-volume histogram and compared.
Results: IMRT showed a significant improvement in HI compared to 3D-CRT (p<0.0001). Although there was no significant difference in sparing of the left lung between both plans for high-dose volumes (V20: 18.2 vs 30.55, p<0.0001), (V25: 11.17 vs 28.12, p<0.0001). IMRT however showed supremacy to 3D-CRT with high-dose volumes for the heart, including V20 (4.44 vs 10.29, p = 0.02), V25 (2.08 vs 8.94, p = 0.002). 3D-CRT was better than IMRT in low-dose volumes for left lung (V5: 92.23 vs 56.60, p<0.001; V10: 60.98 vs 47.20, p = 0.04) and heart (V5: 57.45 vs 30.39, p = 0.004).
Conclusion: IMRT showed better homogeneity and sparing of high-dose volumes to OAR than 3D-CRT. On the other hand, 3D-CRT showed a reduction of low-dose volumes to OARs than IMRT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8246049 | PMC |
http://dx.doi.org/10.4274/ejbh.galenos.2021.6357 | DOI Listing |
ACS Nano
January 2025
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Institute of Biophysics, National Research Council , Genova, Italy.
The physiological, functional, and structural properties of proteins and their pathogenic variants can be summarized using many tools. The information relating to a single protein is often spread among different sources requiring different programs for access. It is not always easy to select, simultaneously visualize, and compare specific properties of different proteins.
View Article and Find Full Text PDFHerein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.
View Article and Find Full Text PDFCommun Biol
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
School of Chemical Engineering and Technology, Guangdong Industry Polytechnic University, Guangzhou, China.
In subsurface water, humic acid (HA) can react with active chlorine to form carcinogenic compounds, posing ecological issues and health risks. This study aims to create sludge activated carbon (SAC), combine it with Fe, and activate peroxosulfate (PMS) to remove HA from water. To verify the successful modification of SAC, the physicochemical properties were characterized using various methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Brunauer Emmett Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!