Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274799PMC
http://dx.doi.org/10.1097/HS9.0000000000000613DOI Listing

Publication Analysis

Top Keywords

sphingosine-1-phosphate receptor-1
4
receptor-1 agonist
4
agonist averts
4
averts novo
4
novo generation
4
generation autoreactive
4
autoreactive t-cells
4
t-cells murine
4
murine acute
4
acute graft-versus-host
4

Similar Publications

Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer.

Int Immunopharmacol

December 2024

Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China. Electronic address:

Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies.

View Article and Find Full Text PDF

Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs.

Immunity

December 2024

Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:

Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.

View Article and Find Full Text PDF

Whole blood concentrations of fingolimod and its pharmacologically active metabolite fingolimod phosphate obtained during routine health care of patients with multiple sclerosis.

Mult Scler Relat Disord

December 2024

Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava; Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic.

Background: Fingolimod is a first-in-class, orally administered drug indicated for the treatment of relapsing-remitting multiple sclerosis. It acts as an immunomodulator, is classified as a "disease-modifying therapy", and its main mechanism of action is the modulation of sphingosine-1-phosphate receptors. In this prospective pilot study, whole blood concentrations of fingolimod and fingolimod phosphate obtained during routine health care were measured.

View Article and Find Full Text PDF

Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc.

View Article and Find Full Text PDF

Structural insights into the engagement of lysophosphatidic acid receptor 1 with different G proteins.

J Struct Biol

December 2024

Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:

Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!