AI Article Synopsis

  • Legume plants can form beneficial relationships with bacteria for nitrogen-fixing, but factors like drought can hinder this symbiosis.
  • Drought stress leads to the buildup of harmful reactive oxygen and nitrogen species that damage cells, prompting plants to produce antioxidants like ascorbic acid (vitamin C) to combat this stress.
  • Researchers attempted to enhance plant growth under drought by increasing ascorbic acid production through genetic modifications, but the results indicated that this strategy did not improve plant growth or symbiotic relationships during drought or normal conditions.

Article Abstract

Legume plants are able to establish nitrogen-fixing symbiotic relations with bacteria. This symbiosis is, however, affected by a number of abiotic constraints, particularly drought. One of the consequences of drought stress is the overproduction of reactive oxygen (ROS) and nitrogen species (RNS), leading to cellular damage and, ultimately, cell death. Ascorbic acid (AsA), also known as vitamin C, is one of the antioxidant compounds that plants synthesize to counteract this oxidative damage. One promising strategy for the improvement of plant growth and symbiotic performance under drought stress is the overproduction of AsA via the overexpression of enzymes in the Smirnoff-Wheeler biosynthesis pathway. In the current work, we generated plants with increased AsA biosynthesis by overexpressing , a gene coding for GDP-L-galactose phosphorylase. We characterized the growth and physiological responses of symbiotic plants both under well-watered conditions and during a progressive water deficit. Results show that increased AsA availability did not provide an advantage in terms of plant growth or symbiotic performance either under well-watered conditions or in response to drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273863PMC
http://dx.doi.org/10.3389/fpls.2021.686075DOI Listing

Publication Analysis

Top Keywords

drought stress
12
stress overproduction
8
plant growth
8
growth symbiotic
8
symbiotic performance
8
increased asa
8
well-watered conditions
8
drought
5
plants
5
increased ascorbate
4

Similar Publications

Epigenetic mechanisms, including DNA methylation, histone modifications, and Noncoding RNAs, play a critical role in enabling plants to adapt to environmental changes without altering their DNA sequence. These processes dynamically regulate gene expression in response to diverse stressors, making them essential for plant resilience under changing global conditions. This review synthesises research on tropical and subtropical plants-species naturally exposed to extreme temperatures, salinity, drought, and other stressors-while drawing parallels with similar mechanisms observed in arid and temperate ecosystems.

View Article and Find Full Text PDF

Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.

View Article and Find Full Text PDF

The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress.

Tree Physiol

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.

Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.

View Article and Find Full Text PDF

Tolerance to multiple abiotic stresses is mediated by interacting CNGC proteins that regulate Ca influx and stomatal movement in rice.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.

Members of the cyclic nucleotide-gated channel (CNGC) proteins are reportedly involved in a variety of biotic and abiotic responses and stomatal movement. However, it is unknown if and how a single member could regulate multiple responses. Here we characterized three closely related CNGC genes in rice, OsCNGC14, OsCNGC15 and OsCNGC16, to determine whether they function in multiple abiotic stresses.

View Article and Find Full Text PDF

The impact of seasonal short-term drought on plant physiology and resilience is crucial for conservation and management strategies. This study investigated drought stress effects on growth, photosynthetic capacity, and physiological responses of Camphor (Cinnamomum camphora) seedlings in Guangxi province, China. Fertilized potted plants underwent continuous drought treatments to assess varying water supply effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!