In maize, doubled haploid (DH) line production capacity of large-sized maize breeding programs often exceeds the capacity to phenotypically evaluate the complete set of testcross candidates in multi-location trials. The ability to partially select DH lines based on genotypic data while maintaining or improving genetic gains for key traits using phenotypic selection can result in significant resource savings. The present study aimed to evaluate genomic selection (GS) prediction scenarios for grain yield and agronomic traits of one of the tropical maize breeding pipelines of CIMMYT in eastern Africa, based on multi-year empirical data for designing a GS-based strategy at the early stages of the pipeline. We used field data from 3,068 tropical maize DH lines genotyped using rAmpSeq markers and evaluated as test crosses in well-watered (WW) and water-stress (WS) environments in Kenya from 2017 to 2019. Three prediction schemes were compared: (1) 1 year of performance data to predict a second year; (2) 2 years of pooled data to predict performance in the third year, and (3) using individual or pooled data plus converting a certain proportion of individuals from the testing set (TST) to the training set (TRN) to predict the next year's data. Employing five-fold cross-validation, the mean prediction accuracies for grain yield (GY) varied from 0.19 to 0.29 under WW and 0.22 to 0.31 under WS, when the 1-year datasets were used training set to predict a second year's data as a testing set. The mean prediction accuracies increased to 0.32 under WW and 0.31 under WS when the 2-year datasets were used as a training set to predict the third-year data set. In a forward prediction scenario, good predictive abilities (0.53 to 0.71) were found when the training set consisted of the previous year's breeding data and converting 30% of the next year's data from the testing set to the training set. The prediction accuracy for anthesis date and plant height across WW and WS environments obtained using 1-year data and integrating 10, 30, 50, 70, and 90% of the TST set to TRN set was much higher than those trained in individual years. We demonstrate that by increasing the TRN set to include genotypic and phenotypic data from the previous year and combining only 10-30% of the lines from the year of testing, the predicting accuracy can be increased, which in turn could be used to replace the first stage of field-based screening partially, thus saving significant costs associated with the testcross formation and multi-location testcross evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274566PMC
http://dx.doi.org/10.3389/fpls.2021.685488DOI Listing

Publication Analysis

Top Keywords

training set
20
set
13
data
13
tropical maize
12
testing set
12
year's data
12
genomic selection
8
maize breeding
8
grain yield
8
data predict
8

Similar Publications

Near-infrared (NIR) spectroscopy, with its advantages of non-destructive analysis, simple operation, and fast detection speed, has been widely applied in various fields. However, the effectiveness of current spectral analysis techniques still relies on complex preprocessing and feature selection of spectral data. While data-driven deep learning can automatically extract features from raw spectral data, it typically requires large amounts of labeled data for training, limiting its application in spectral analysis.

View Article and Find Full Text PDF

The involvement of axillary lymph nodes (ALNs) is a critical prognostic factor affecting patient management and outcomes in breast cancer (BC). This study aims to comprehensively analyze the clinical data of BC patients, evaluate ultrasonic signs of ALNs, and explore the implications of a prediction model for ALN metastasis (ALNM) in early-stage BC patients based on ultrasonic features and clinical data. This study retrospectively analyzed ultrasonic features and clinical data from 216 patients diagnosed with unilateral invasive BC.

View Article and Find Full Text PDF

This study aims to identify factors influencing aesthetic outcomes following facial basal cell carcinoma (BCC) plastic surgery to enhance post-operative satisfaction and cosmetic results. A retrospective cohort study was conducted on 303 patients who underwent facial BCC plastic surgery between June 2021 and June 2023. Data on demographics, blood tests, SF-12, and Skindex-16 scores were analyzed.

View Article and Find Full Text PDF

AlphaFold2 (AF2), a deep-learning based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear.

View Article and Find Full Text PDF

Objectives: To develop and validate a deep learning model using multimodal PET/CT imaging for detecting and classifying focal liver lesions (FLL).

Methods: This study included 185 patients who underwent F-FDG PET/CT imaging at our institution from March 2022 to February 2023. We analyzed serological data and imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!