Optimized Projection and Fisher Discriminative Dictionary Learning for EEG Emotion Recognition.

Front Psychol

School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China.

Published: June 2021

Electroencephalogram (EEG)-based emotion recognition (ER) has drawn increasing attention in the brain-computer interface (BCI) due to its great potentials in human-machine interaction applications. According to the characteristics of rhythms, EEG signals usually can be divided into several different frequency bands. Most existing methods concatenate multiple frequency band features together and treat them as a single feature vector. However, it is often difficult to utilize band-specific information in this way. In this study, an optimized projection and Fisher discriminative dictionary learning (OPFDDL) model is proposed to efficiently exploit the specific discriminative information of each frequency band. Using subspace projection technology, EEG signals of all frequency bands are projected into a subspace. The shared dictionary is learned in the projection subspace such that the specific discriminative information of each frequency band can be utilized efficiently, and simultaneously, the shared discriminative information among multiple bands can be preserved. In particular, the Fisher discrimination criterion is imposed on the atoms to minimize within-class sparse reconstruction error and maximize between-class sparse reconstruction error. Then, an alternating optimization algorithm is developed to obtain the optimal solution for the projection matrix and the dictionary. Experimental results on two EEG-based ER datasets show that this model can achieve remarkable results and demonstrate its effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8274488PMC
http://dx.doi.org/10.3389/fpsyg.2021.705528DOI Listing

Publication Analysis

Top Keywords

frequency band
12
optimized projection
8
projection fisher
8
fisher discriminative
8
discriminative dictionary
8
dictionary learning
8
emotion recognition
8
eeg signals
8
frequency bands
8
specific discriminative
8

Similar Publications

Pitch variation of the fundamental frequency (F0) is critical to speech understanding, especially in noisy environments. Degrading the F0 contour reduces behaviorally measured speech intelligibility, posing greater challenges for tonal languages like Mandarin Chinese where the F0 pattern determines semantic meaning. However, neural tracking of Mandarin speech with degraded F0 information in noisy environments remains unclear.

View Article and Find Full Text PDF

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.

View Article and Find Full Text PDF

A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Evidence suggests that attenuated mismatch negative (MMN) waves have a close link to auditory verbal hallucinations (AVH) and their clinical outcomes, especially impaired neural oscillations such as θ, β representing attentional control. In current study, thirty patients with schizophrenia and AVH (SZ) and twenty-nine healthy controls (HC) underwent multi-feature MMN paradigm measurements including frequency and duration deviant stimuli (fMMN and dMMN). Clinical symptoms and MMN paradigm were followed up among SZ group after 8-week treatment.

View Article and Find Full Text PDF

Partial directed coherence analysis of resting-state EEG signals for alcohol use disorder detection using machine learning.

Front Neurosci

January 2025

Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

Introduction: Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!