The marbled flounder () is a commercial flatfish in East Asia. The aim of this study was to improve its sperm cryopreservation protocol based on the vitality assessment of 7-day and 1-year cryopreserved sperm. Four extenders (extender-1: sucrose solution; extender-2: glucose solution; extender-3: fish Ringer's solution; and extender-4: modified fish Ringer's solution) were tested with a combination of five cryoprotectants (CPAs) (dimethyl sulfoxide: MeSO; glycerol: GLY; ethylene glycol: EG; propylene glycol: PG; and methanol: MeOH) at four different concentrations (5, 10, 12, and 15%). Fluorescent technique was applied to detect the plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), and DNA integrity of fresh and cryopreserved sperm specimens. Fresh sperm was diluted at a ratio of 1:2 (sperm:extender). Post-thaw motility of sperm cryopreserved using 15% MeSO along with either extender-1 (86.0 ± 5.2%) or extender-2 (85.7 ± 7.1%) was similar ( > 0.05) to that of fresh sperm. Sperm cryopreserved using 12% GLY combined with extender-1 (83.67 ± 6.7%) or extender-2 (83.3 ± 4.7%) showed a similar motility to those cryopreserved with 15% MeSO, but significantly lower from fresh sperm. The type of straw (0.25 or 0.50 mL) did not show any significant difference ( > 0.05) in post-thaw sperm motility. The highest values of PMI and MMP were observed for 7-day cryopreserved sperm using extender-1 in combination with 15% MeSO (91.0 ± 2.9% and 90.0 ± 2.0%, respectively) or 12% GLY (90.0 ± 1.3% and 90.0 ± 4.6%, respectively). These results were similar to those of fresh sperm (95.3 ± 2.1% and 92.9 ± 2.5%, respectively). PMI and MMP of 1-year cryopreserved sperm using extender-1 in combination with 15% MeSO (90.3 ± 2.5% and 89.3 ± 2.1%, respectively) or 12% GLY (90.0 ± 4.4% and 88.7 ± 2.2%, respectively) were significantly similar ( > 0.05) to those of fresh sperm. Sperm DNA integrity did not reveal any significant difference ( > 0.05) between fresh and cryopreserved (7-day and 1-year) sperm. Based on the assessed sperm vitality indicators, a cryopreservation protocol using extender-1 in combination with 15% MeSO or 12% GLY has potential for hatchery as well as to create a germplasm bank.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273914 | PMC |
http://dx.doi.org/10.3389/fphys.2021.696737 | DOI Listing |
Anim Reprod Sci
December 2024
Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin Province, China. Electronic address:
Low-temperature injury affects normal physiological function and viability of boar sperm during cryopreservation. Small ubiquitin-like modifier (SUMO) modification of proteins after translation is related to the cell stress response but the relationship between SUMO modification and oxidative stress in freeze-thawed sperm remains unclear. A-kinase ankyrin 4 (AKAP4) and its precursor proAKAP4 are two main proteins in mammalian sperm.
View Article and Find Full Text PDFPurpose Subfertility is a well-known aftermath of treatment of testicular germ cell tumours (GCTs). Growing evidence suggests reduced semen quality also before therapy. The present study aimed to evaluate pre-orchiectomy semen parameters in GCT patients and to compare the results with controls.
View Article and Find Full Text PDFCryobiology
January 2025
Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi 530031, China. Electronic address:
Cryobiology
January 2025
Specialized Surgical Hospital "Doctor Malinov", 46, Gotse Delchev blvd., 1860 Sofia, Bulgaria.
The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.
View Article and Find Full Text PDFTheriogenology
December 2024
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
Sperm cryopreservation is a complex process involving gene expression, protein synthesis, membrane stability, and metabolic adaptation. However, molecular alterations in sperm cryopreservation and the mechanisms defending against freezing damage remain poorly understood. This study investigates these changes and defense mechanisms using transcriptomics, proteomics, and metabolomics data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!