Nanoparticle-Assisted Sonosensitizers and Their Biomedical Applications.

Int J Nanomedicine

Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

Published: July 2021

AI Article Synopsis

  • Sonodynamic therapy (SDT) is a non-invasive treatment that uses sonosensitizers to create reactive oxygen species (ROS), making it effective in reaching deeper tissues, but traditional sonosensitizers have limitations that restrict their use.
  • The rise of nanotechnology has led to the design of nanoparticles (NPs) that enhance the effectiveness of sonosensitizers in SDT, enabling their application in ultrasonography, drug delivery, and combination treatments.
  • The review highlights the mechanisms of SDT, categorizes NPs-assisted sonosensitizers, and discusses current challenges and future directions for improving NPs-assisted SDT.

Article Abstract

As a non-invasive strategy, sonodynamic therapy (SDT) which utilizes sonosensitizers to generate reactive oxygen species (ROS) has received significant interest over recent years due to its ability to break depth barrier. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, various nanoparticles (NPs) have been designed and used to assist sonosensitizers for SDT. This review first summarizes the possible mechanisms of SDT, then classifies the NPs-assisted sonosensitizers and discusses their biomedical applications in ultrasonography, drug delivery, high intensity focused ultrasound and SDT-based combination treatment. Finally, some challenges and future perspectives of NPs-assisted SDT has also been discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275046PMC
http://dx.doi.org/10.2147/IJN.S307885DOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
sdt
5
nanoparticle-assisted sonosensitizers
4
sonosensitizers biomedical
4
applications non-invasive
4
non-invasive strategy
4
strategy sonodynamic
4
sonodynamic therapy
4
therapy sdt
4
sdt utilizes
4

Similar Publications

Stepwise Modulation of Bridged Single-Benzene-Based Fluorophores for Materials Science.

Chemistry

December 2024

Universitat Duisburg-Essen, Institute of organic chemistry, Universitätsstraße 7, 45117, Essen, GERMANY.

In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler p scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O4, N1O3, N2O2, N3O1, and N4 are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms.

View Article and Find Full Text PDF

Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation.

View Article and Find Full Text PDF

The rapid growth of nanotechnology has opened new frontiers in biomedical applications, particularly through the use of metal nanoparticles. This study explores the green synthesis of copper nanoparticles (CuNPs) using an aqueous extract of Pleurotus ostreatus (PO-CuNPs), and their characterization through UV-visible spectroscopy, FTIR, SEM, and EDAX. The synthesized PO-CuNPs demonstrated exceptional antioxidant activity, evident in hydrogen peroxide scavenging and phosphomolybdenum assays.

View Article and Find Full Text PDF

Poly(2-Hydroxymethyl-2-oxazoline) as Super-hydrophilic Antifouling Polymer.

Angew Chem Int Ed Engl

December 2024

Ghent University, Department of Organic CHemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Non-ionic "super-hydrophilic" polymers generally possess non-fouling characteristics and can suppress non-specific interactions with blood proteins. Here, we revitalized a protected alcohol functionalized 2-oxazoline monomer, 2-acetoxymethyl-2-oxazoline and explored the possibility of making "super-hydrophilic" poly(2-oxazoline)s for biomedical applications. The synthesis of the 2-acetoxymethyl-2-oxazoline monomer and its cationic ring-opening homopolymerization and copolymerization kinetics are reported.

View Article and Find Full Text PDF

Liquid metal electrodes enabled cascaded on-chip dielectrophoretic separation of large-size-range particles.

Lab Chip

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, P. R. China.

The separation of large-size-range particles of complex biological samples is critical but yet well resolved. As a label-free technique, dielectrophoresis (DEP)-based particle separation faces the challenge of how to configure DEP in an integrated microfluidic device to bring particles of various sizes into the effective DEP force field. Herein, we propose a concept that combines the passive flow fraction mechanism with the accumulative DEP deflection effect in a cascaded manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: