As a non-invasive strategy, sonodynamic therapy (SDT) which utilizes sonosensitizers to generate reactive oxygen species (ROS) has received significant interest over recent years due to its ability to break depth barrier. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, various nanoparticles (NPs) have been designed and used to assist sonosensitizers for SDT. This review first summarizes the possible mechanisms of SDT, then classifies the NPs-assisted sonosensitizers and discusses their biomedical applications in ultrasonography, drug delivery, high intensity focused ultrasound and SDT-based combination treatment. Finally, some challenges and future perspectives of NPs-assisted SDT has also been discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275046 | PMC |
http://dx.doi.org/10.2147/IJN.S307885 | DOI Listing |
Chemistry
December 2024
Universitat Duisburg-Essen, Institute of organic chemistry, Universitätsstraße 7, 45117, Essen, GERMANY.
In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler p scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O4, N1O3, N2O2, N3O1, and N4 are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms.
View Article and Find Full Text PDFChem Soc Rev
December 2024
School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation.
View Article and Find Full Text PDFChem Biodivers
December 2024
Yogi Vemana University, Biotechnology and Bioinformatics, Yogi Vemana University, Vemanapuram Kadapa- 516 005, Andh, 516005, Y.S.R., INDIA.
The rapid growth of nanotechnology has opened new frontiers in biomedical applications, particularly through the use of metal nanoparticles. This study explores the green synthesis of copper nanoparticles (CuNPs) using an aqueous extract of Pleurotus ostreatus (PO-CuNPs), and their characterization through UV-visible spectroscopy, FTIR, SEM, and EDAX. The synthesized PO-CuNPs demonstrated exceptional antioxidant activity, evident in hydrogen peroxide scavenging and phosphomolybdenum assays.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Ghent University, Department of Organic CHemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.
Non-ionic "super-hydrophilic" polymers generally possess non-fouling characteristics and can suppress non-specific interactions with blood proteins. Here, we revitalized a protected alcohol functionalized 2-oxazoline monomer, 2-acetoxymethyl-2-oxazoline and explored the possibility of making "super-hydrophilic" poly(2-oxazoline)s for biomedical applications. The synthesis of the 2-acetoxymethyl-2-oxazoline monomer and its cationic ring-opening homopolymerization and copolymerization kinetics are reported.
View Article and Find Full Text PDFLab Chip
December 2024
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, P. R. China.
The separation of large-size-range particles of complex biological samples is critical but yet well resolved. As a label-free technique, dielectrophoresis (DEP)-based particle separation faces the challenge of how to configure DEP in an integrated microfluidic device to bring particles of various sizes into the effective DEP force field. Herein, we propose a concept that combines the passive flow fraction mechanism with the accumulative DEP deflection effect in a cascaded manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!