Hematopoietic stem/progenitor cell (HSPC) and leukemic cell homing is an important biological phenomenon that occurs through key interactions between adhesion molecules. Tethering and rolling of the cells on endothelium, the crucial initial step of the adhesion cascade, is mediated by interactions between selectins expressed on endothelium to their ligands expressed on HSPCs/leukemic cells in flow. Although multiple factors that affect the rolling behavior of the cells have been identified, molecular mechanisms that enable the essential slow and stable cell rolling remain elusive. Here, using a microfluidics-based single-molecule live cell fluorescence imaging, we reveal that unique spatiotemporal dynamics of selectin ligands on the membrane tethers and slings, which are distinct from that on the cell body, play an essential role in the rolling of the cell. Our results suggest that the spatial confinement of the selectin ligands to the tethers and slings together with the rapid scanning of a large area by the selectin ligands, increases the efficiency of selectin-ligand interactions during cell rolling, resulting in slow and stable rolling of the cell on the selectins. Our findings provide novel insights and contribute significantly to the molecular-level understanding of the initial and essential step of the homing process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280113PMC
http://dx.doi.org/10.1038/s42003-021-02398-2DOI Listing

Publication Analysis

Top Keywords

cell rolling
12
selectin ligands
12
cell
9
molecular mechanisms
8
leukemic cell
8
slow stable
8
tethers slings
8
rolling cell
8
rolling
7
single-molecule imaging
4

Similar Publications

Glutathione (GSH) is a key biomarker closely associated with cancer, and its content varies greatly between normal cells and cancer cells. However, intracellular detection of GSH was challenging because existing probes not only have a long detection time but also have fluorescence in the blue-green region that overlaps with the biological matrix's spontaneous fluorescence, thus affecting the detection accuracy. Therefore, a new red fluorescent nano-probe was needed to rapidly and accurately detected GSH within the biological matrix.

View Article and Find Full Text PDF

Telomerase activation can lead to the escape from cell senescence and immortalization, playing a crucial role in the growth and proliferation of cancer cells. Therefore, the detection of telomerase activity is essential for cancer diagnosis and treatment. Herein, we develop a novel ultrasensitive and visually detectable platform.

View Article and Find Full Text PDF

Design and Optimization of Isothermal Gene Amplification for Generation of High-Gain Oligonucleotide Products by MicroRNAs.

ACS Meas Sci Au

December 2024

Department of Bioengineering and Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Thermal cycling-based quantitative polymerase chain reaction (qPCR) represents the gold standard method for accurate and sensitive nucleic acid quantification in laboratory settings. However, its reliance on costly thermal cyclers limits the implementation of this technique for rapid point-of-care (POC) diagnostics. To address this, isothermal amplification techniques such as rolling circle amplification (RCA) have been developed, offering a simpler alternative that can operate without the need for sophisticated instrumentation.

View Article and Find Full Text PDF

380 MPa-30% grade biodegradable Zn-Mn-Mg-Ca alloy: Bimodal grain structure, large work-hardening strain, and enhanced biocompatibility.

Acta Biomater

December 2024

Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China. Electronic address:

Strain softening is a common issue for high-strength biodegradable Zn alloys. We developed Zn-0.6Mn-0.

View Article and Find Full Text PDF

Simulation and assimilation of the digital human brain.

Nat Comput Sci

December 2024

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Here we present the Digital Brain (DB)-a platform for simulating spiking neuronal networks at the large neuron scale of the human brain on the basis of personalized magnetic resonance imaging data and biological constraints. The DB aims to reproduce both the resting state and certain aspects of the action of the human brain. An architecture with up to 86 billion neurons and 14,012 GPUs-including a two-level routing scheme between GPUs to accelerate spike transmission in up to 47.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!