The short survival time of transplanted adipose-derived mesenchymal stem cells (ASCs) is a problem for skin wound healing. Transplantation after the formation of cellular spheroids has been investigated as a promising method for prolonging cellular survival. However, there have been technical restrictions for transplantation of spheroids in clinical practice. Here, we show an effective method for transplantation of ASC spheroids onto skin wounds in order to efficiently cure refractory ulcers. To assist anchoring of spheroids onto skin wounds, we used a 120-nm-thick free-standing film (nanosheet) that has a highly adhesive property. Bioluminescence imaging showed that ASC spheroids carried by the nanosheet survived for 14 days, which is about two-times longer than that previously reported. Wounds treated with a nanosheet carrying ASC spheroids were 4-times smaller than untreated wounds on day 14. This method for transplantation of spheroids could be applied to cell therapy for various refractory skin wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280158PMC
http://dx.doi.org/10.1038/s41598-021-93642-6DOI Listing

Publication Analysis

Top Keywords

asc spheroids
12
skin wounds
12
adipose-derived mesenchymal
8
mesenchymal stem
8
spheroids
8
transplantation spheroids
8
method transplantation
8
spheroids skin
8
wounds
5
enhanced cellular
4

Similar Publications

Article Synopsis
  • The management of diabetic wounds is difficult, but extracellular vesicles (EVs) from human adipose-derived stem cells (hASCs) show potential for treatment despite challenges with their quantity and quality.
  • A novel method using cell spheroids to culture hASCs successfully increased the yield and angiogenic properties of the EVs, leading to improved wound healing characteristics.
  • In vivo tests on diabetic rats demonstrated that these enhanced EVs significantly improved collagen production, wound closure, and blood vessel formation, suggesting a promising new approach for treating diabetic wounds.
View Article and Find Full Text PDF

Purpose: The purpose of the study was to assess the pattern of spheroidal degeneration of cornea (SDC) and its association with other eye diseases at the anterior segment clinic (ASC) in Menelik II Tertiary Referral Hospital.

Methods: A hospital-based prospective descriptive study was conducted at ASC, in Menelik II Tertiary Referral Hospital, from May 2021 to September 2022. All enrolled patients meeting the inclusion criteria were selected and assessed with a structured questionnaire.

View Article and Find Full Text PDF

Lung adenocarcinoma, recognized as one of the most formidable malignancies with a dismal prognosis and low survival rates, poses a significant challenge in its treatment. This article delineates the design and development of a carbon dot-vesicle conjugate (HACD-TMAV) for efficient cytotoxicity towards lung cancer cells by target selective delivery of the glutamine inhibitor 6-diazo-5-oxo-L-norleucine (DON) within CD44-enriched A549 cancer cells. HACD-TMAV is composed of hyaluronic acid-based carbon dots (HACDs) and trimesic acid-based vesicles (TMAV), which are bound electrostatic interactions.

View Article and Find Full Text PDF

White adipose tissue (WAT) plays a crucial role in energy homeostasis and secretes numerous adipokines with far-reaching effects. WAT is linked to diseases such as diabetes, cardiovascular disease, and cancer. There is a high demand for suitable in vitro models to study diseases and tissue metabolism.

View Article and Find Full Text PDF

Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!