Intraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders, collectively termed as tauopathies, including the most common Alzheimer's disease (AD). Therefore, selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies. Here, we designed and synthesized a novel DEPhosphorylation TArgeting Chimera (DEPTAC) to specifically facilitate the binding of tau to Bα-subunit-containing protein phosphatase 2A (PP2A-Bα), the most active tau phosphatase in the brain. The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo. Further studies revealed that DEPTAC significantly improved microtubule assembly, neurite plasticity, and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368. Our data provide a strategy for selective removal of the hyperphosphorylated tau, which sheds new light for the targeted therapy of AD and related-tauopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280143 | PMC |
http://dx.doi.org/10.1038/s41392-021-00669-2 | DOI Listing |
Neurobiol Aging
December 2024
University of Nebraska Medical Center, College of Medicine, Department of Neurological Sciences, Omaha, NE, USA. Electronic address:
Neurodegenerative Tauopathies are a part of several neurological disorders and aging-related diseases including, but not limited to, Alzheimer's Disease, Frontotemporal Dementia with Parkinsonism, and Chronic Traumatic Encephalopathy. The major hallmarks present in these conditions include Tau pathology (composed of hyperphosphorylated Tau tangles) and synaptic loss. in vivo studies linking Tau pathology and mitochondrial alterations at the synapse, an avenue that could lead to synaptic loss, remain predominantly scarce.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Computational Brain Research and Intervention (C-Brain) Lab, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, California, USA.
Introduction: Amyloid beta (Aβ) plaques and hyperphosphorylated tau in the entorhinal regions are key Alzheimer's disease (AD) markers, but the spatial Aβ pathways influencing tau pathology remain unclear.
Methods: We applied predictive modeling to identify Aβ standardized uptake value ratio (SUVR) spatial patterns that predict entorhinal tau levels, future hippocampal volume, and Preclinical Alzheimer's Cognitive Composite (PACC) scores at 5-year follow-up. The model was trained on Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 237), incorporating amyloid-PET (positron emission tomography), tau-PET, magnetic resonance imaging (MRI), and cognitive data, and validated on Harvard Aging Brain Study (HABS) (N = 276).
Alzheimers Dement
January 2025
Department of Neuroscience, Yale Medical School, New Haven, Connecticut, USA.
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
Alzheimer's disease (AD) is a type of neurodegenerative disease that describes cognitive decline and memory loss resulting in disability in movement, memory, speech etc. Which first affects the hippocampal and entorhinal cortex regions of brain. Pathogenesis of AD depends on Amyloid-β, hyper-phosphorylation of tau protein, mitochondrial dysfunction, cholinergic hypothesis and oxidative stress.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.
We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!