Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions.

Eur J Pharm Sci

Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom. Electronic address:

Published: October 2021

Background: Dabigatran etexilate (DABE) has been suggested as a clinical probe for intestinal P-glycoprotein (P-gp)-mediated drug-drug interaction (DDI) studies and, as an alternative to digoxin. Clinical DDI data with various P-gp inhibitors demonstrated a dose-dependent inhibition of P-gp with DABE. The aims of this study were to develop a joint DABE (prodrug)-dabigatran reduced physiologically-based-pharmacokinetic (PBPK) model and to evaluate its ability to predict differences in P-gp DDI magnitude between a microdose and a therapeutic dose of DABE.

Methods: A joint DABE-dabigatran PBPK model was developed with a mechanistic intestinal model accounting for the regional P-gp distribution in the gastrointestinal tract. Model input parameters were estimated using DABE and dabigatran pharmacokinetic (PK) clinical data obtained after administration of DABE alone or with a strong P-gp inhibitor, itraconazole, and over a wide range of DABE doses (from 375 µg to 400 mg). Subsequently, the model was used to predict extent of DDI with additional P-gp inhibitors and with different DABE doses.

Results: The reduced DABE-dabigatran PBPK model successfully described plasma concentrations of both prodrug and metabolite following administration of DABE at different dose levels and when co-administered with itraconazole. The model was able to capture the dose dependency in P-gp mediated DDI. Predicted magnitude of itraconazole P-gp DDI was higher at the microdose (predicted vs. observed median fold-increase in AUC/AUC (min-max) = 5.88 (4.29-7.93) vs. 6.92 (4.96-9.66) ) compared to the therapeutic dose (predicted median fold-increase in AUC/AUC = 3.48 (2.37-4.84) ). In addition, the reduced DABE-dabigatran PBPK model predicted successfully the extent of DDI with verapamil and clarithromycin as P-gp inhibitors. Model-based simulations of dose staggering predicted the maximum inhibition of P-gp when DABE microdose was concomitantly administered with itraconazole solution; simulations also highlighted dosing intervals required to minimise the DDI risk depending on the DABE dose administered (microdose vs. therapeutic).

Conclusions: This study provides a modelling framework for the evaluation of P-gp inhibitory potential of new molecular entities using DABE as a clinical probe. Simulations of dose staggering and regional differences in the extent of intestinal P-gp inhibition for DABE microdose and therapeutic dose provide model-based guidance for design of prospective clinical P-gp DDI studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2021.105932DOI Listing

Publication Analysis

Top Keywords

pbpk model
16
p-gp
13
dabe
12
p-gp inhibitors
12
p-gp ddi
12
therapeutic dose
12
dabe-dabigatran pbpk
12
model
9
ddi
9
p-gp-mediated drug-drug
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!