Epicardial adipose tissue may affect hemodynamics and cardiorespiratory fitness as it is a metabolically active visceral adipose tissue and a source of inflammatory bioactive substances that can substantially modulate cardiovascular morphology and function. However, the associations between epicardial adipose tissue and hemodynamics and cardiorespiratory fitness remain unclear. This cross-sectional study aimed to examine the association between epicardial adipose tissue volume and hemodynamics, and cardiorespiratory fitness among Japanese individuals of various ages and of both sexes. Epicardial adipose tissue volume was measured in 120 participants (age, 21-85 years) by cardiac magnetic resonance imaging. To evaluate cardiorespiratory fitness, peak oxygen uptake was measured by cardiopulmonary exercise testing. Peak cardiac output and arteriovenous oxygen difference were calculated by impedance cardiography. The epicardial adipose tissue volume was significantly increased in middle-aged and older women. The epicardial adipose tissue volume was significantly and negatively correlated to peak cardiac output and peak oxygen uptake, regardless of age and sex; furthermore, epicardial adipose tissue showed a strong negative correlation with peak heart rate. Epicardial adipose tissue and peak cardiac output were significantly associated (β = -0.359, 95% confidence interval, -0.119 to -0.049, p < 0.001), even after multivariate adjustment (R2 = 0.778). However, in the multiple regression analysis with peak oxygen uptake as a dependent variable, the epicardial adipose tissue volume was not an independent predictor. These data suggest that increased epicardial adipose tissue volume may be correlated with decreased peak oxygen uptake, which might have mediated the abnormal hemodynamics among Japanese people of various ages and of both sexes. Interventions targeting epicardial adipose tissue could potentially improve hemodynamics and cardiorespiratory fitness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279356PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254733PLOS

Publication Analysis

Top Keywords

adipose tissue
52
epicardial adipose
48
cardiorespiratory fitness
24
tissue volume
24
hemodynamics cardiorespiratory
16
peak oxygen
16
oxygen uptake
16
tissue
13
epicardial
12
ages sexes
12

Similar Publications

Fat distribution changes with advancing menopause, which predisposes to metabolic inflammation. However, it remains unclear, how health behaviours, including sleeping, eating and physical activity, or their combinations contribute to metabolic inflammation caused by visceral adipose tissue (VAT). The aim of the present study was to examine whether health behaviours are associated with metabolic inflammation and whether VAT mediates these associations in menopausal women.

View Article and Find Full Text PDF

The purpose of this study was to understand the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.

View Article and Find Full Text PDF

The mammalian adipose tissue (AT) plays a key role in regulating immune function and anti-infective protection to maintain tissue regional homeostasis. However, it is still unclear whether there are differences in the participation of AT in primary and secondary immune response, and whether avian AT has the similar immune function characteristics to mammals. In this study, we used Newcastle disease virus (NDV) attenuated vaccine to induce primary and secondary immune response in chickens, and the changes of the key regulatory gene NR4A3 (nuclear receptor subfamily 4 group A member 3) of T cells activation and its targeted miR-20a-5p were detected by quantitative real-time PCR (qRT-PCR).

View Article and Find Full Text PDF

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!