This article addresses decentralized robust portfolio optimization based on multiagent systems. Decentralized robust portfolio optimization is first formulated as two distributed minimax optimization problems in a Markowitz return-risk framework. Cooperative-competitive multiagent systems are developed and applied for solving the formulated problems. The multiagent systems are shown to be able to reach consensuses in the expected stock prices and convergence in investment allocations through both intergroup and intragroup interactions. Experimental results of the multiagent systems with stock data from four major markets are elaborated to substantiate the efficacy of multiagent systems for decentralized robust portfolio optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2021.3088884DOI Listing

Publication Analysis

Top Keywords

multiagent systems
24
decentralized robust
16
robust portfolio
16
portfolio optimization
16
optimization based
8
cooperative-competitive multiagent
8
systems decentralized
8
multiagent
6
systems
6
optimization
5

Similar Publications

The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR-Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8 T-cell infiltration while reducing neutrophils.

View Article and Find Full Text PDF

For tolerant containment control of multi-agent systems, considering the challenges in modeling and the impact of actuator faults on system security and reliability, a finite index dynamic event-triggered policy iteration algorithm is proposed. This algorithm only requires input and output data, without relying on system models, and simultaneously considers the faults and energy consumption issues to improve the system reliability and save energy consumption. The conditions are provided to demonstrate the convergence and optimality of the algorithm, including a convergence speed, that is, the number of iterations required for convergence is finite.

View Article and Find Full Text PDF

Task Offloading with LLM-Enhanced Multi-Agent Reinforcement Learning in UAV-Assisted Edge Computing.

Sensors (Basel)

December 2024

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.

Unmanned aerial vehicles (UAVs) furnished with computational servers enable user equipment (UE) to offload complex computational tasks, thereby addressing the limitations of edge computing in remote or resource-constrained environments. The application of value decomposition algorithms for UAV trajectory planning has drawn considerable research attention. However, existing value decomposition algorithms commonly encounter obstacles in effectively associating local observations with the global state of UAV clusters, which hinders their task-solving capabilities and gives rise to reduced task completion rates and prolonged convergence times.

View Article and Find Full Text PDF

With the rapid development of the Internet of Things (IoT), the scope of personal data sharing has significantly increased, enhancing convenience in daily life and optimizing resource management. However, this also poses challenges related to data privacy breaches and holdership threats. Typically, blockchain technology and cloud storage provide effective solutions.

View Article and Find Full Text PDF

A comprehensive review of digital twin in healthcare in the scope of simulative health-monitoring.

Digit Health

January 2025

Faculty IV: School of Science and Technology, Institute for Knowledge-Based Systems and Knowledge Management, University of Siegen, Siegen, Germany.

Objective: Digital twins (DTs) emerged in the wake of Industry 4.0 and the creation of cyber-physical systems, motivated by the increased availability and variability of machine and sensor data. DTs are a concept to create a digital representation of a physical entity and imitate its behavior, while feeding real-world data to the digital counterpart, thus allowing enabling digital simulations related to the real-world entity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!