Myomegalin regulates Hedgehog pathway by controlling PDE4D at the centrosome.

Mol Biol Cell

Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340.

Published: September 2021

Mutations in the hedgehog (Hh) signaling are implicated in birth defects and cancers, including medulloblastoma (MB), one of the most malignant pediatric brain tumors. Current Hh inhibitors face the challenge of drug resistance and tumor relapse, urging new insights in the Hh pathway regulation. Our previous study revealed how PDE4D controls global levels of cAMP in the cytoplasm to positively regulate Hh signaling; in the present study, we found that a specific isoform PDE4D3 is tethered to the centrosome by Myomegalin (Mmg), a centrosome/Golgi-associated protein. Mmg loss dislocates PDE4D3 from the centrosome, leading to local PKA overactivation and inhibition of the Hh signaling, leaving other PKA-related pathways unaffected. Mmg loss suppresses the proliferation of granule neuron precursors and blocks the growth of MB in mouse model. Our findings specify a new regulatory mechanism of the Hh pathway and highlight an exciting therapeutic avenue for Hh-related cancers with reduced side effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684712PMC
http://dx.doi.org/10.1091/mbc.E21-02-0064DOI Listing

Publication Analysis

Top Keywords

mmg loss
8
myomegalin regulates
4
regulates hedgehog
4
hedgehog pathway
4
pathway controlling
4
controlling pde4d
4
pde4d centrosome
4
centrosome mutations
4
mutations hedgehog
4
hedgehog signaling
4

Similar Publications

E3 ubiquitin ligases have been linked to developmental diseases including autism, Angelman syndrome (UBE3A), and Johanson-Blizzard syndrome (JBS) (UBR1). Here, we report variants in the E3 ligase UBR5 in 29 individuals presenting with a neurodevelopmental syndrome that includes developmental delay, autism, intellectual disability, epilepsy, movement disorders, and/or genital anomalies. Their phenotype is distinct from JBS due to the absence of exocrine pancreatic insufficiency and the presence of autism, epilepsy, and, in some probands, a movement disorder.

View Article and Find Full Text PDF

Evaluation of breast-specific marker expression in metastatic breast cancers: Correlation with subtype switch.

Histopathology

October 2024

Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.

Aims: This study evaluates the utility of breast specific markers in identifying breast cancer subtypes within metastatic settings. The subtype alteration in metastatic disease and its consequent impact on breast-specific marker expression is also examined.

Materials And Methods: GATA-binding protein 3 (GATA3), mammaglobin (MMG), transcriptional repressor GATA binding 1 (TRSP1) and SRY-box transcription factor 10 (SOX10) expression were assessed in a large cohort of metastatic breast cancer (MBC) cases and correlated with the characteristics of both MBC and primary breast cancer (PBC).

View Article and Find Full Text PDF

Modification of gel properties of Meretrix meretrix (clam) with polysaccharides: physical characterization and interaction mechanism.

J Sci Food Agric

February 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.

Background: This study investigated the contribution of 11 polysaccharides (2%, w/w), including pectin (PC), κ-carrageenan (KC), ι-carrageenan (IC), gellan gum (GG), guar gum (GM), sodium alginate (SA), konjac gum (KG), gum arabic (GA), fucoidan (FC), locust bean gum (LBG), and curdlan (CD), to the gel and microstructural properties of Meretrix meretrix clam gel (MMG).

Results: The hardness, springiness and chewiness of MMG with KC, IC, GG, SA and FC addition increased by ~10%-250%, while PC, GM, KG and LBG groups decreased by ~0.6% to 69%.

View Article and Find Full Text PDF
Article Synopsis
  • Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by a mutation in the LMNA gene, leading to accelerated aging and severe cardiovascular issues starting within the first year of life.
  • The study found that progerin expression in vascular smooth muscle cells (VSMCs) causes increased cell death, which is linked to elevated levels of poly(ADP-Ribosyl)ation and reduced nicotinamide adenine dinucleotide (NAD) levels.
  • A new compound, trifluridine, was discovered to increase NAD levels by reducing PARP-1 activity, and its treatment showed potential in reducing VSMCs loss and improving clinical signs of progeria in mice
View Article and Find Full Text PDF

Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders.

Genet Med

September 2024

Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, WC1N 3BG London, UK. Electronic address:

Purpose: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear.

Methods: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!