The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, , and a related strain, , isolated from Australian orchids. colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-04-21-0084-R | DOI Listing |
BMC Plant Biol
January 2025
College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China.
To investigate the effects of row ratio configurations on intercropping advantages and related rhizosphere microbial communities, a field experiment involving five treatments of different rows of broomcorn millet, i.e., P1M1 (1 row of broomcorn millet intercropped with 1 row of alfalfa), P2M3, P1M2, P1M3 and broomcorn millet alone (SP), was conducted on the Loess Plateau of China.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970 Brasília, DF, Brazil.
In this work, several imidazo[1,2-]pyridines were synthesized through the Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR), and their phytotoxicity was evaluated by the influence on the growth of wheat coleoptiles and three important agricultural seeds (, , and ) at test concentrations of 1000, 300, 100, 30, and 10 μM. A structure-activity relationship was established, showing the importance of halogen groups at the position of the attached aromatic ring and the presence of a cyclohexylamine group for greater activity. Post-modification of some GBB-3CR adducts was carried out, leading to imidazo[1,2-]pyridine-tetrazole hybrids, which were also evaluated in these bioassays.
View Article and Find Full Text PDFBMC Genomics
December 2024
College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
NF-Y is a class of heterotrimeric transcription factor composed of three subunits; NF-YA, NF-YB, and NF-YC. This complex binds to the CCAAT box found in eukaryotic promoters and is involved in the plant development and proliferation at various stages. Although many studies were conducted on NF-Y gene family in various species, but no study has been reported yet in switchgrass (Panicum virgatum L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
Investigating the ability of non-hyperaccumulator plants to grow in soils polluted by cadmium (Cd) and their potential for phytostabilization or phytoextraction is essential for assessing their use in phytomanagement efficiency. Therefore, we evaluated the tolerance of high-biomass grasses to Cd by measuring biomass production and element accumulation and valued them for their suitability for phytoextraction or phytostabilization purposes on moderately Cd-polluted land (total Cd concentration of 7.5 mg kg) by determining Cd accumulation in the plants and calculating the bioconcentration (Cd BCF) and translocation factors (Cd TF).
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!