We demonstrate for the case of photoexcited [Ru(2,2'-bipyridine)] how femtosecond resonant inelastic X-ray scattering (RIXS) at the ligand K-edge allows one to uniquely probe changes in the valence electronic structure following a metal-to-ligand charge-transfer (MLCT) excitation. Metal-ligand hybridization is probed by nitrogen-1s resonances providing information on both the electron-accepting ligand in the MLCT state and the hole density of the metal center. By comparing to spectrum calculations based on density functional theory, we are able to distinguish the electronic structure of the electron-accepting ligand and the other ligands and determine a temporal upper limit of (250 ± 40) fs for electron localization following the charge-transfer excitation. The spin of the localized electron is deduced from the selection rules of the RIXS process establishing new experimental capabilities for probing transient charge and spin densities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312498PMC
http://dx.doi.org/10.1021/acs.jpclett.1c01401DOI Listing

Publication Analysis

Top Keywords

metal-to-ligand charge-transfer
8
femtosecond resonant
8
resonant inelastic
8
inelastic x-ray
8
x-ray scattering
8
electronic structure
8
electron-accepting ligand
8
charge-transfer dynamics
4
ligand
4
dynamics ligand
4

Similar Publications

Multiconfigurational Electronic Structure of Nickel Cross-Coupling Catalysts Revealed by X-ray Absorption Spectroscopy.

J Phys Chem Lett

December 2024

Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.

Ni 2,2'-bipyridine complexes are commonly invoked intermediates in metallaphotoredox cross-coupling reactions. Despite their ubiquity, design principles targeting improved catalytic performance remain underdetermined. A series of Ni(bpy)(Ar)Cl (R = MeOOC, -Bu, R' = CH, CF) complexes were proposed to have multiconfigurational electronic structures on the basis of multiconfigurational/multireference calculations, with significant mixing of Ni → bpy metal-to-ligand charge transfer (MLCT) configurations into the ground-state wave function.

View Article and Find Full Text PDF

Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand () that appears as a promising platform for filling this niche.

View Article and Find Full Text PDF

The 4-methyl-2-(pyridin-2-yl)-2,1-borazaronaphthalene molecule Hazab-py has been successfully used, for the first time, as a ligand in a ruthenium(II) polypyridine complex A (with the formula [Ru(dtbbpy)(azab-py)], where dtbbpy = 4,4'-di--butyl-2,2'-bipyridine). This compound was characterized by NMR spectroscopy and high-resolution mass spectrometry (MS), and its electrochemical and photophysical properties were fully investigated and compared to those of its homoleptic analogue [Ru(dtbbpy)] (B), an archetypical mono-cationic cyclometalated complex C (with the formula [Ru(dtbbpy)(ppy)], where Hppy = 2-phenylpyridine), and the more structurally similar analogue [Ru(dtbbpy)(naft-py)] (D), where the B-N unit of the azaborine ligand is replaced by a standard CC one, resulting in the 2-(naphthalen-2-yl)pyridine ligand (Hnaft-py). The presence of the novel 1,2-azaborine ligand induces a 0.

View Article and Find Full Text PDF

Durable Antibacterial Photothermal Membrane Using Melanin-Inspired Cu-Doped Polynorepinephrine for Water Remediation.

Nano Lett

December 2024

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.

Solar-driven interfacial evaporation is an efficient approach to addressing water scarcity due to its environmental sustainability. However, the prolonged use of solar evaporators causes microbial contamination from wastewater. Inspired by the antifouling properties of polydopamine, we develop a series of mono- and dual-metal-loaded poly(norepinephrine) (PNE) nanoparticles by pre-doping multiple metal ions.

View Article and Find Full Text PDF

Design of dinuclear osmium complex doped antifouling cellulose nanoparticles for targeting and dual photodynamic/photothermal therapy under near infrared irradiation.

Int J Biol Macromol

December 2024

Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Transition metal complexes has been explored in the treatment of tumors in photodynamic theray (PDT) or photothermal therapy (PTT) and Osmium complex attracts attentration due to its lower toxicity and longer absorption wavelength. However, there was no report about binuclear Os complex for combined therapy of PDT and PTT which could have a synergistic effect and improve the effectiveness. Herein, we synthesis of mono/dinuclear Os complexes (OsY1, OsY2) with dual PDT/PTT capabilities under a single near-infrared (NIR) excitation wavelength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!