Titanium (Ti) and titanium alloys have been widely used in the field of biomedicine. However, the unmatched biomechanics and poor bioactivities of conventional Ti implants usually lead to insufficient osseointegration. To tackle these challenges, it is critical to develop a novel Ti implant that meets the bioadaptive requirements for load-bearing critical bone defects. Notably, three-dimensional (3D)-printed Ti implants mimic the microstructure and mechanical properties of natural bones. Additionally, eco-friendly techniques based on inorganic-binding peptides have been applied to modify Ti surfaces. Herein, in our study, Ti surfaces were modified to reinforce osseointegration using chimeric peptides constructed by connecting W9, RP1P, and minTBP-1 directly or (GP), respectively. PR1P is derived from the extracellular VEGF-binding domain of prominin-1, which increases the expression of VEGF and promotes the binding of VEGF to endothelial cells, thereby accelerating angiogenesis. W9 induces osteoblast differentiation in bone marrow mesenchymal stem cells and human mesenchymal stem cells to promote bone formation. Overall, chimeric peptides promote osseointegration by promoting angiogenesis and osteogenesis. Additionally, chimeric peptides with P3&4 were more effective than those with P1&2 in improving osseointegration, which might be ascribed to the capacity of P3&4 to provide a greater range for chimeric peptides to express their activity. This work successfully used chimeric peptides to modify 3D-Ti implant surfaces to improve osseointegration on the implant-bone surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c11207 | DOI Listing |
Front Immunol
January 2025
Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Development of antigen-specific memory upon pathogen exposure is a hallmark of the adaptive immune system. While natural killer (NK) cells are considered part of the innate immune system, humans exposed to the chronic viral pathogen cytomegalovirus (CMV) often possess a distinct NK cell population lacking in individuals who have not been exposed, termed "adaptive" NK cells. To identify the "naïve" population from which this "memory" population derives, we performed phenotypic, transcriptional, and functional profiling of NK cell subsets.
View Article and Find Full Text PDFHere we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.
View Article and Find Full Text PDFElife
December 2024
Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown.
View Article and Find Full Text PDFJACS Au
December 2024
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan.
The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!