SLC7A11/xCT Prevents Cardiac Hypertrophy by Inhibiting Ferroptosis.

Cardiovasc Drugs Ther

Department of Pathology, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China.

Published: June 2022

Purpose: Systemic hypertension may induce adverse hypertrophy of the left cardiac ventricle. Pathological cardiac hypertrophy is a common cause of heart failure. We investigated the significance of ferroptosis repressor xCT in hypertrophic cardiomyopathy.

Methods: xCT expression in angiotensin II (Ang II)-treated mouse hearts and rat cardiomyocytes was determined using qRT-PCR and Western blotting. Cardiac hypertrophy was induced by Ang II infusion in xCT knockout mice and their wildtype counterparts. Blood pressure, cardiac pump function, and pathological changes of cardiac remodeling were analyzed in these mice. Cell death, oxidative stress, and xCT-mediated ferroptosis were examined in Ang II-treated rat cardiomyocytes.

Results: After Ang II infusion, xCT was downregulated at day 1 but upregulated at day 14 at both mRNA and protein levels. It was also decreased in Ang II-treated cardiomyocytes, but not in cardiofibroblasts. Inhibition of xCT exacerbated cardiomyocyte hypertrophy and boosted the levels of ferroptosis biomarkers Ptgs2, malondialdehyde, and reactive oxygen species induced by Ang II, while overexpression of xCT opposed these detrimental effects. Furthermore, knockout of xCT aggravated Ang II-mediated mouse cardiac fibrosis, hypertrophy, and dysfunction. Ferrostatin-1, a ferroptosis inhibitor, alleviated the exacerbation of cardiomyocyte hypertrophy caused by inhibiting xCT in cultured rat cells or ablating xCT in mice.

Conclusion: xCT acts as a suppressor in Ang II-mediated cardiac hypertrophy by blocking ferroptosis. Positive modulation of xCT may therefore represent a novel therapeutic approach against cardiac hypertrophic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10557-021-07220-zDOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
16
ang ii-treated
12
xct
11
cardiac
9
hypertrophy
8
ang
8
induced ang
8
ang infusion
8
infusion xct
8
cardiomyocyte hypertrophy
8

Similar Publications

Restenosis occurs commonly after aortic coarctation (CoA) repair, usually requiring treatment by balloon dilation. Its effect on physical exercise performance is not documented. A retrospective analysis of exercise testing and echocardiographic assessment was performed in children after CoA repair.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Diabetic microvascular complications are associated with left ventricular hypertrophy in patients with type 2 diabetes mellitus.

J Diabetes Complications

December 2024

Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China. Electronic address:

Background: Left ventricular hypertrophy (LVH) is an important and common pathologic change in the heart of patients with diabetes mellitus. Microvascular complications have been reported to be involved in the development and process of LVH. This study aimed to explore the association between diabetic microvascular complications and LVH in patients with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Serial intrauterine transfusion for severe fetal anemia due to anti-M alloimmunization.

Asian J Transfus Sci

September 2022

Department of Obstetrics and Gynecology, Faculty of Medicine Padjajaran University, Hasan Sadikin General Hospital, Bandung, Indonesia.

Anti-M antibody is one of the causes of severe fetal anemia and intrauterine death despite its relatively low frequency. A G3P2 26-year-old pregnant woman referred to our hospital at 29 weeks gestational age (WGA) with fetal hydrops. Her second pregnancy results in intrauterine fetal death at 35 WGA due to fetal hydrops.

View Article and Find Full Text PDF

A 7-week-old infant with a 1-week history of a SARS-CoV2 respiratory infection presented with tachypnea. Cardiomegaly was noted on chest roentgenogram. Echocardiogram showed a large pericardial effusion, with tamponade physiology and a large pericardial mass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!