Integration of aprotic CO reduction to oxalate at a Pb catalyst into a GDE flow cell configuration.

Faraday Discuss

Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

Published: July 2021

Electrochemical CO2 reduction to oxalic acid in aprotic solvents could be a potential pathway to produce carbon-neutral oxalic acid. One of the challenges in aprotic CO2 reduction are the limited achievable current densities under standard conditions, despite the increased CO2 solubility compared to aqueous applications. The application of aprotic solvents can reduce CO2 rather selectively to oxalate, and faradaic efficiencies (FEs) of up to 80% were achieved in this study with a Pb catalyst in acetonitrile, the FE being mainly dictated by the local CO2 concentration at the electrode. This process was integrated into a flow cell employing a two-layered carbon-free lead (Pb) gas diffusion electrode (GDE) and a sacrificial zinc (Zn) anode. With the application of this GDE the applicable current densities could be improved up to a current density of j = 80 mA cm-2 at a FE(oxalate) = 53%, which is within the range of the highest j reported in the literature. In addition, we provide an explanation for the deactivation mechanism of metal catalysts observed in the aprotic CO2 reduction literature. The deactivation is not related to a mass transport limitation but to cathodic corrosion observed at highly negative potential when employing quaternary ammonium supporting electrolyte cations, promoting catalyst leaching.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fd00141dDOI Listing

Publication Analysis

Top Keywords

co2 reduction
12
flow cell
8
oxalic acid
8
aprotic solvents
8
aprotic co2
8
current densities
8
co2
6
integration aprotic
4
reduction
4
aprotic reduction
4

Similar Publications

Selective Liquid Chemical Production in Waste Polyolefin Photorefinery by Controlling Reactive Species.

J Am Chem Soc

January 2025

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.

Photocatalytic upcycling of waste polyolefins into value-added chemicals provides promise in plastic waste management and resource utilization. Previous works demonstrate that polyolefins can be converted into carboxylic acids, with CO as the final oxidation product. It is still challenging to explore more transformation products, particularly mild-oxidation products such as alcohols, because of their instability compared with polymer substrates, which are prone to oxidation during catalytic reactions.

View Article and Find Full Text PDF

Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.

View Article and Find Full Text PDF

Molecular Uranium Dioxide-Mediated CO Photoreduction.

J Am Chem Soc

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).

View Article and Find Full Text PDF

Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism.

Sci Total Environ

January 2025

Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:

The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.

View Article and Find Full Text PDF

Marine forests support coastal biodiversity and ecosystem functioning. Nonetheless, how their productivity and carbon uptake might be affected by extreme events, such as marine heatwaves (MHWs), is yet to be explored. We experimentally evaluated the changes in oxygen and carbon budgets of the benthic community formed by the fucoid Ericaria brachycarpa induced by the exposure to a MHW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!