The new radical ligand 5,8-dimethyl-1,4-dioxonaphtho[2,3-][1,2,3]dithiazolyl () is reported. Two crystal polymorphs, and , differing in their pancake-bonded dimerization motif and S···O contact network, are identified. The self-assembly of Mn(II) metal ions with leads to the formation of that exhibits a Mn(II)-radical-Mn(II)-radical-Mn(II) linear arrangement of three Mn(hfac) units bridged by two radical ligands (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). Characterization by single-crystal X-ray diffraction of this Mn(II) complex packing structure reveals close noncovalent S···O contacts between the units in one dimension along the direction. The magnetic properties of the coordination complex are characterized by dc and ac susceptibility measurements on a microcrystalline solid. The magnetic data down to 4.8 K indicate the presence of effective ferromagnetic interactions (/ = +0.16 K) between the molecular = 13/2 units along the supramolecular chain involving noncovalent S···O contacts. Below 2.9 K, a non-zero out-of-phase component appears in the ac susceptibility, indicating the presence of a three-dimensional magnetic phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c01287DOI Listing

Publication Analysis

Top Keywords

noncovalent s···o
12
s···o contacts
12
heisenberg spin
4
spin chains
4
chains chalcogen
4
chalcogen bonding
4
bonding noncovalent
4
s···o
4
contacts enable
4
enable long-range
4

Similar Publications

Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications.

Adv Colloid Interface Sci

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors.

View Article and Find Full Text PDF

Protein-carbohydrate interactions play a crucial role in numerous fundamental biological processes. Thus, description and comparison of the carbohydrate binding site (CBS) architecture is of great importance for understanding of the underlying biological mechanisms. However, traditional approaches for carbohydrate-binding protein analysis and annotation rely primarily on the sequence-based methods applied to specific protein classes.

View Article and Find Full Text PDF

Bactericidal Hemostatic Sponge: A Point of Care Solution to Combat Traumatic Injury.

Adv Healthc Mater

January 2025

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins.

Angew Chem Int Ed Engl

January 2025

Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, CHINA.

Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL).

View Article and Find Full Text PDF

Covalent Affibody-Molecular Glue Drug Conjugate Nanoagent for Proximity-Enabled Reactive Therapeutics.

Adv Sci (Weinh)

January 2025

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.

Sulfur-fluoride exchange (SuFEx) reaction is an emerging class of click chemistry reaction. Owing to its efficient reactivity under physiological conditions, SuFEx reaction is used to construct covalent protein drugs. Herein, a covalent affibody-molecular glue drug conjugate nanoagent is reported, which can irreversibly bind with its target protein through proximity-enabled SuFEx reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!