Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxygen evolution reaction (OER) plays a paramount role in a variety of electrochemical energy conversion devices, and the exploration of highly active, stable, and low-cost electrocatalysts is one of the most important topics in this field. The exfoliated black phosphorus (EBP) nanosheet with a two-dimensional (2D) layered structure has high carrier mobility but is limited by excessive oxygen-containing intermediate absorption and fast deterioration in air. We here report the fabrication of nanohybrids of amorphous CoFeB nanosheets on EBP nanosheets (EBP/CoFeB). The 2D/2D heterostructure, thanks to the electronic interactions and oxygen affinity difference between EBP and CoFeB nanosheets, is capable of balancing the oxygen-containing intermediate absorption to an optimal status for facilitating the OER process. While the crystalline EBP contributes to the improved conductivity, the amorphous coating protects EBP and thus ensures the catalytic stability. The EBP/CoFeB electrocatalyst shows excellent OER performance with an ultralow overpotential of 227 mV at 10 mA cm with an ultrasmall Tafel slope of 36.7 mV dec with excellent stability. This study may inspire more researches to develop heterostructured nanohybrid electrocatalysts for a diversity of electrochemical reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c04715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!