A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation. | LitMetric

2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation.

ACS Nano

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.

Published: July 2021

The oxygen evolution reaction (OER) plays a paramount role in a variety of electrochemical energy conversion devices, and the exploration of highly active, stable, and low-cost electrocatalysts is one of the most important topics in this field. The exfoliated black phosphorus (EBP) nanosheet with a two-dimensional (2D) layered structure has high carrier mobility but is limited by excessive oxygen-containing intermediate absorption and fast deterioration in air. We here report the fabrication of nanohybrids of amorphous CoFeB nanosheets on EBP nanosheets (EBP/CoFeB). The 2D/2D heterostructure, thanks to the electronic interactions and oxygen affinity difference between EBP and CoFeB nanosheets, is capable of balancing the oxygen-containing intermediate absorption to an optimal status for facilitating the OER process. While the crystalline EBP contributes to the improved conductivity, the amorphous coating protects EBP and thus ensures the catalytic stability. The EBP/CoFeB electrocatalyst shows excellent OER performance with an ultralow overpotential of 227 mV at 10 mA cm with an ultrasmall Tafel slope of 36.7 mV dec with excellent stability. This study may inspire more researches to develop heterostructured nanohybrid electrocatalysts for a diversity of electrochemical reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c04715DOI Listing

Publication Analysis

Top Keywords

intermediate absorption
12
amorphous cofeb
8
black phosphorus
8
oxygen-containing intermediate
8
cofeb nanosheets
8
ebp
5
heterostructure amorphous
4
cofeb coating
4
coating black
4
nanosheets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!