Composting is widely used to reduce the abundance of antibiotic resistance genes (ARGs) in solid waste. While ARG dynamics have been extensively investigated during composting, the fate and abundance of residual ARGs during the storage remain unexplored. Here, we tested experimentally how ARG and mobile genetic element (MGE) abundances change during compost storage using metagenomics, quantitative PCR and direct culturing. We found that 43.8% of ARGs and 39.9% of MGEs quickly recovered already during the first week of storage. This rebound effect was mainly driven by the regrowth of indigenous, antibiotic-resistant bacteria that survived the composting. Bacterial transmission from the surrounding air had a much smaller effect, being most evident as MGE rebound during the later stages of storage. While hyperthermophilic composting was more efficient at reducing the relative abundance of ARGs and MGEs, relatively greater ARG rebound was observed during the storage of hyperthermophilic compost, exceeding the initial levels of untreated sewage sludge. Our study reveals that residual ARGs and MGEs left in the treated compost can quickly rebound during the storage via airborne introduction and regrowth of surviving bacteria, highlighting the need to develop better storage strategies to prevent the rebound of ARGs and MGEs after composting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.15672 | DOI Listing |
Nanotechnology
January 2025
Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.
Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!