A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modification of ultra-micropore dominated carbon by O/N-containing functional groups grafted for enhanced supercapacitor performances. | LitMetric

Modification of ultra-micropore dominated carbon by O/N-containing functional groups grafted for enhanced supercapacitor performances.

Dalton Trans

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China. and School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China.

Published: August 2021

In our study, a simple method was employed to prepare ultra-micropore-dominated carbon materials with controllable pore size. A mass of heteroatoms was introduced by surface functional group grafting, resulting in enhanced electrochemical performance: the maximum specific capacity of 327.5 F g-1 was obtained at 0.5 A g-1 in 6 M KOH, while that of un-grafted original ultra-microporous carbon was only 188 F g-1, with long-term cycle stability (90.5% of the initial after 10 000 cycles), and excellent rate performance (over 82% at the current density from 0.5 A g-1 to 10 A g-1). The mechanism behind the improved performance was due to the presence of the introduced functional groups that improved the surface wettability of the material and provided additional redox active sites. Their synergistic effects promoted the enhanced electrochemical performance of the ultra-microporous carbon. This study provides a basis for the study of the energy storage mechanism of ultra-microporous carbon and the grafted modification of carbon materials with heteroatom-containing functional groups.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt02017jDOI Listing

Publication Analysis

Top Keywords

functional groups
12
ultra-microporous carbon
12
carbon materials
8
enhanced electrochemical
8
electrochemical performance
8
g-1 g-1
8
carbon
6
g-1
5
modification ultra-micropore
4
ultra-micropore dominated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!