Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Iron, nitrogen-co-doped carbon quantum dots (Fe,N-CDs) were prepared via a simple one-step hydrothermal method. The quantum yield of fluorescence reached about 27.6% and the blue-emissive Fe,N-CDs had a mean size of 3.76 nm. The as-prepared carbon quantum dots showed good solubility, a high quantum yield, good biocompatibility, low cytotoxicity, and high photostability. Interestingly, the as-prepared Fe,N-CDs exhibited good selectivity and sensitivity toward both hematin and ferric ions, and the limit of detection for hematin and ferric ions was calculated to be about 0.024 μM and 0.64 μM, respectively. At the same time, Fe,N-CDs were used for imaging HeLa cells and showed that most Fe,N-CDs were detained in the lysosome. Thus, this fluorescent probe has potential application in the quantitative detection of hematin or Fe3+ in a complex environment and for determining Fe3+ at the cellular level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1an00828e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!