Transcranial direct stimulation, a non-invasive neurostimulation technique for modulating cortical excitability, and yoga have both respectively been shown to positively affect cognition. While preliminary research has shown that combined transcranial direct stimulation and meditation may have synergistic effects on mood and cognition, this was the first study to explore the combination of transcranial direct stimulation and yoga. Twenty-two healthy volunteers with a regular yoga practice were randomized to receive either active transcranial direct stimulation (anodal left, cathodal right dorsolateral prefrontal cortex) followed by yoga intervention or sham transcranial direct stimulation followed by yoga intervention a double-blind, cross-over design over two separate intervention days. Outcome measures included working memory performance, measured with the n-back task and mindfulness state, measured with the Toronto Mindfulness Scale, and were conducted offline, with pre-post assessments. Twenty participants completed both days of the intervention. Active transcranial direct stimulation did not have a significant effect on working memory or levels of mindfulness. There was a significant placebo effect, with better performance on day 1 of the intervention, irrespective of whether participants received active or sham transcranial direct stimulation. There was no significant difference between active versus sham transcranial direct stimulation concerning working memory performance and mindfulness, which may be accounted by the small sample size, the transient nature of the intervention, the fact that yoga and transcranial direct stimulation concerning were not conducted simultaneously, and the specific site of stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.jin2002036 | DOI Listing |
J Affect Disord
January 2025
School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.
Aim: This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD).
Methods: In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA).
AIMS Neurosci
October 2024
Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy.
The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews.
View Article and Find Full Text PDFNeuroimage
January 2025
Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control.
View Article and Find Full Text PDFMult Scler Relat Disord
December 2024
IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy. Electronic address:
Background: Multiple sclerosis (MS) is a demyelinating disease characterized by balance and gait impairment, fatigue, anxiety, depression, and diminished quality of life. Transcranial direct current stimulation (tDCS) has emerged as an effective intervention for managing these symptoms.
Objective: This study aims to investigate the efficacy of remotely supervised tDCS (RS-tDCS) applied to the left dorsolateral prefrontal cortex, in conjunction with a telerehabilitation (TR) program, on motor (balance and gait), cognitive (executive functions), and participation outcomes (fatigue, anxiety, depression, and quality of life) in persons with MS (pwMS).
Int J Geriatr Psychiatry
January 2025
Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!