Ytterbium (II) Hydride as a Powerful Multielectron Reductant.

Chemistry

School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.

Published: September 2021

A dimeric β-diketiminato ytterbium(II) hydride affects both the two-electron aromatization of 1,3,5,7-cyclooctatetraene (COT) and the more challenging two-electron reduction of polyaromatic hydrocarbons, including naphthalene (E =-2.60 V). Confirmed by Density Functional Theory calculations, these reactions proceed via consecutive polarized Yb-H/C=C insertion and deprotonation steps to provide the respective ytterbium (II) inverse sandwich complexes and hydrogen gas. These observations highlight the ability of a simple ytterbium(II) hydride to act as a powerful two-electron reductant at room temperature without the necessity of an external electron to initiate the reaction and avoiding radicaloid intermediates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202102428DOI Listing

Publication Analysis

Top Keywords

hydride powerful
8
ytterbiumii hydride
8
ytterbium hydride
4
powerful multielectron
4
multielectron reductant
4
reductant dimeric
4
dimeric β-diketiminato
4
β-diketiminato ytterbiumii
4
hydride two-electron
4
two-electron aromatization
4

Similar Publications

X-ray absorption spectroscopy (XAS) is a powerful technique that provides information about the electronic and local geometric structural properties of newly developed electrocatalysts, especially when it is performed under operating conditions (i.e., ).

View Article and Find Full Text PDF

Accurate modeling of transition metal-containing compounds is of great interest due to their wide-ranging and significant applications. These systems present several challenges from an electronic structure perspective, including significant multi-reference characters and many chemically relevant orbitals. A further complication arises from the so-called double d-shell effect, which is known to cause a myriad of issues in the treatment of first-row transition metals with both single- and multi-reference methods.

View Article and Find Full Text PDF

Shuttle HAT for mild alkene transfer hydrofunctionalization.

Nat Commun

October 2024

Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland.

Hydrogen atom transfer (HAT) from a metal-hydride is a reliable and powerful method for functionalizing unsaturated C-C bonds in organic synthesis. Cobalt hydrides (Co-H) have garnered significant attention in this field, where the weak Co-H bonds are most commonly generated in a catalytic fashion through a mixture of stoichiometric amounts of peroxide oxidant and silane reductant. Here we show that the reverse process of HAT to an alkene, i.

View Article and Find Full Text PDF

Hydride shuttle catalysis has emerged as a powerful synthetic platform, enabling the selective formation of C-C bonds to yield sp-rich structures. By virtue of the compelling reactivity of sterically encumbered Lewis acids from the frustrated Lewis pair regime, hydride shuttle catalysis enables the regioselective functionalization of alkyl amines at either the α- or β-position. In contrast to classical Lewis acid reactivity, the increased steric hindrance prevents interaction with the Lewis basic amine itself, instead leading to reversible abstraction of a hydride from the amine α-carbon.

View Article and Find Full Text PDF

Cu-catalyzed carbonyl hydrosilylation involves a ligated "[(L)CuH]" as the active catalyst, where the ligand L has a crucial role toward the stability, stereoselectivity, and enhancement of the hydridicity. Strongly σ-donating N-heterocyclic carbenes (NHCs), their ring-expanded form, and an abnormal NHC as ligands have yielded robust and efficient Cu catalysts. However, cyclic(alkyl)(amino)carbenes (CAACs), despite being stronger σ-donors than NHCs and already having a salient Cu chemistry, are yet to be reported as a similar ligand platform for this purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!