Ticks are important vectors that facilitate the transmission of a broad range of micropathogens to vertebrates, including humans. Because of their role in disease transmission, it has become increasingly important to identify and characterize the micropathogen profiles of tick populations. The objective of the present study was to survey the micropathogens of ticks by third-generation metagenomic sequencing using the PacBio Sequel platform. Approximately 46.481 Gbp of raw micropathogen sequence data were obtained from samples from four different regions of Heilongjiang Province, China. The clean consensus sequences were compared with host sequences and filtered at 90% similarity. Most of the identified genomes represent previously unsequenced strains. The draft genomes contain an average of 397,746 proteins predicted to be associated with micropathogens, over 30% of which do not have an adequate match in public databases. In these data, and were detected in all samples, while was detected only in ticks from G1 samples. Viruses are a key component of micropathogen populations. In the present study, , and were detected in different samples, and more than 10-30% of the viral community in all samples comprised unknown viruses. Deep metagenomic shotgun sequencing has emerged as a powerful tool to investigate the composition and function of complex microbial communities. Thus, our dataset substantially improves the coverage of tick micropathogen genomes in public databases and represents a valuable resource for micropathogen discovery and for studies of tick-borne diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253887 | PMC |
http://dx.doi.org/10.1016/j.ijppaw.2021.06.003 | DOI Listing |
iScience
January 2025
Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
Comprehensive data on the epidemiology of cancer-related thrombosis in Africa has been sparse until recently. Thus, this review was aimed to investigate the magnitude of cancer-related thrombosis in Africa. To obtain key articles, comprehensive search was conducted using various databases.
View Article and Find Full Text PDFEClinicalMedicine
February 2025
Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Brain stimulation therapy (BST) has significant potential in treating psychiatric, movement, and cognitive disorders. Given the high prevalence of comorbidities among these disorders, we conducted an umbrella review to comprehensively assess the efficacy of BSTs in treating the core symptoms across these three categories of disorders.
Methods: We systematically searched for meta-analyses and network meta-analyses of randomized controlled trials with sham controls up to September 25, 2024, from databases including PubMed, PsycINFO, Embase, and the Cochrane Library.
Front Med (Lausanne)
January 2025
Department of Critical Care Medicine, Qilu Hospital, Shandong University, Qingdao, China.
Objective: To investigate the potential and evolving trends in fluid management for patients with sepsis, utilizing a bibliometric approach.
Methods: Scholarly articles pertaining to fluid therapy for sepsis patients were extracted from the Web of Science (WoS) database as of June 1, 2024. The R software package, "Bibliometrix," was utilized to scrutinize the primary bibliometric attributes and to construct a three-field plot to illustrate the relationships among institutions, nations, and keywords.
Front Immunol
January 2025
Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.
Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.
Front Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!